Nucleation and growth of droplets in the overheated free-standing smectic films

Regular Article
  • 72 Downloads

Abstract.

We present a theoretical explanation for the formation of nematic droplets in free-standing smectic films (FSSF) overheated above the temperature of the bulk smectic - nematic transition. The conditions for the formation of the nematic droplets in smectic films are studied on the basis of the general thermodynamic approach to the stability of FSSF. It is shown that the formation of droplets in overheated FSSF is only possible in the presence of a certain amount of thermally generated dislocation loops. We determined the gain in the free energy related with the formation of the nematic droplets, the value of the critical work and the critical size of the drops. The initial increase of the drops size is due to release of material from the growing dislocation loops. At the second stage the drops growth occurs through coalescence of the smaller drops with the larger ones. The droplets attract each other by means of capillary forces arising due to gradients of the surface energy in the area between them. Drops size evolution, the dynamics of their growth and merging are in good agreement with experiments.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    P.G. de Gennes, J. Prost, Physics of Liquid Crystals (Clarendon Press, Oxford, 1993)Google Scholar
  2. 2.
    P. Oswald, P. Pierański, Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, Boca Raton, London, New York, 2006) p. 447Google Scholar
  3. 3.
    W.H. de Jeu, B.I. Ostrovskii, A.N. Shalaginov, Rev. Mod. Phys. 75, 181 (2003) and references thereinADSCrossRefGoogle Scholar
  4. 4.
    S. Stoebe, P. Mach, C.C. Huang, Phys. Rev. Lett. 73, 1384 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    S. Stoebe, C.C. Huang, Int. J. Mod. Phys. B 9, 2285 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    E.I. Demikhov, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 265, 403 (1995)CrossRefGoogle Scholar
  7. 7.
    E.I. Demikhov, V.K. Dolganov, K.P. Meletov, Phys. Rev. E 52, R1285 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    P.M. Johnson, P. Mach, E.D. Wedell, F. Lintgen, M. Neubert, C.C. Huang, Phys. Rev. E 55, 4386 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    S. Pankratz, P.M. Johnson, H.T. Nguyen, C.C. Huang, Phys. Rev. E 58, R2721 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    F. Picano, P. Oswald, E. Kats, Phys. Rev. E 63, 021705 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    P. Oswald, F. Picano, F. Caillier, Phys. Rev. E 68, 061701 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    V.K. Dolganov, E.I. Demikhov, R. Fouret, C. Gors, Phys. Lett. A 220, 242 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    E.A.L. Mol, G.C.L. Wong, J.-M. Petit, F. Rieutord, W.H. de Jeu, Physica B 248, 191 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    S. Pankratz, P.M. Johnson, R. Hołyst, C.C. Huang, Phys. Rev. E 60, R2456 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    S. Pankratz, P.M. Johnson, A. Paulson, C.C. Huang, Phys. Rev. E 61, 6689 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    P.G. de Gennes, Langmuir 6, 1448 (1990)CrossRefGoogle Scholar
  17. 17.
    P. Richetti, L. Moreau, P. Barois, P. Kékicheff, Phys. Rev. E 54, 1749 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    E.E. Gorodetskii, E.S. Pikina, V.E. Podnek, JETP 88, 35 (1999) (Zh. Eksp. Teor. Fiz. 115ADSCrossRefGoogle Scholar
  19. 19.
    E.S. Pikina, B.I. Ostrovskii, W.H. de Jeu, Eur. Phys. J. E 38, 13 (2015)CrossRefGoogle Scholar
  20. 20.
    R. Najjar, Y. Galerne, Mol. Cryst. Liq. Cryst. 367, 3263 (2001)Google Scholar
  21. 21.
    H. Schüring, R. Stannarius, Langmuir 18, 9735 (2002)CrossRefGoogle Scholar
  22. 22.
    H. Schüring, R. Stannarius, Mol. Cryst. Liq. Cryst. 412, 425 (2004)CrossRefGoogle Scholar
  23. 23.
    P.V. Dolganov, P. Cluzeau, G. Joly, V.K. Dolganov, H.T. Nguyen, Phys. Rev. E 72, 031713 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Ch. Bohley, R. Stannarius, Soft Matter 4, 683 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    I. Muševič, Phil. Trans. R. Soc. A 371, 20120266 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    E.S. Pikina, B.I. Ostrovskii, to be published in Liq. Cryst. (2017)Google Scholar
  27. 27.
    E.I. Demikhov, M. John, K. Krohn, Liq. Cryst. 23, 443 (1997)CrossRefGoogle Scholar
  28. 28.
    P.V. Dolganov, E.I. Demikhov, V.K. Dolganov, B.M. Bolotin, K. Krohn, Eur. Phys. J. E 12, 593 (2003)CrossRefGoogle Scholar
  29. 29.
    P.V. Dolganov, H.T. Nguyen, G. Joly, E.I. Kats, V.K. Dolganov, P. Cluzeau, JETP 105, 665 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    D. Pettey, T.C. Lubensky, D.R. Link, Liq. Cryst. 25, 579 (1998)CrossRefGoogle Scholar
  31. 31.
    P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Science 275, 1770 (1997)CrossRefGoogle Scholar
  32. 32.
    P. Cluzeau, G. Joly, C. Gors, V.K. Dolganov, H.T. Nguyen, Liq. Cryst. 29, 505 (2002)CrossRefGoogle Scholar
  33. 33.
    P. Cluzeau, M. Ismaili, A. Anakhar, M. Foulon, A. Babeau, H.T. Nguyen, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 362, 185 (2001)CrossRefGoogle Scholar
  34. 34.
    E.F. Gramsbergen, W.H. de Jeu, J. Als-Nielsen, J. Phys. (Paris) 47, 711 (1986)CrossRefGoogle Scholar
  35. 35.
    B.M. Ocko, A. Braslau, P.S. Pershan, J. Als-Nielsen, M. Deutsch, Phys. Rev. Lett. 57, 94 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    R. Lucht, Ch. Bahr, Phys. Rev. Lett. 78, 3487 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    A.E. Lord, Phys. Rev. Lett. 29, 1366 (1972)ADSCrossRefGoogle Scholar
  38. 38.
    L. Ricard, J. Prost, J. Phys. 42, 861 (1981)CrossRefGoogle Scholar
  39. 39.
    S. Kralj, T.J. Sluckin, Phys. Rev. E 50, 2940 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    M. Slavinec, S. Kralj, S. Zumer, T.J. Sluckin, Phys. Rev. E 63, 031705 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    J.S. Langer, M.E. Fisher, Phys. Rev. Lett. 19, 560 (1967)ADSCrossRefGoogle Scholar
  42. 42.
    P.S. Pershan, J. Prost, J. Appl. Phys. 46, 2343 (1975)ADSCrossRefGoogle Scholar
  43. 43.
    E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics, Ch. XII (Science, Moscow, 1979)Google Scholar
  44. 44.
    B.M. Ocko, X.Z. Wu, E.B. Sirota et al., Phys. Rev. E 55, 3164 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    A.B. Herhold, H.E. King, E.B. Sirota, J. Chem. Phys. 116, 9036 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    L. Lejček, J. Bechhoefer, P. Oswald, J. Phys. II 2, 1511 (1992)Google Scholar
  47. 47.
    M. Kléman, O.D. Lavrentovich, Soft Matter Physics: an Introduction (Springer-Verlag, New York, 2003) chapters 5, 13Google Scholar
  48. 48.
    M.R. Fisch, P.S. Pershan, L.B. Sorensen, Phys. Rev. A 29, 2741 (1984)ADSCrossRefGoogle Scholar
  49. 49.
    P. Mach, C.C. Huang, T. Stoebe, E.D. Wedell, T. Nguyen, W.H. de Jeu, F. Guittard, J. Nacri, R. Shashidar, N. Clark, I.M. Jiang, F.J. Kao, H. Lui, H. Nohira, Langmuir 14, 4330 (1998)CrossRefGoogle Scholar
  50. 50.
    D. Davidov, C.R. Safinya, M. Kaplan, S.S. Dana, R. Schaetzing, R.J. Birgeneau, J.D. Litster, Phys. Rev. B 19, 1657 (1979)ADSCrossRefGoogle Scholar
  51. 51.
    J.C. Géminard, R. Hołyst, P. Oswald, Phys. Rev. Lett. 78, 1924 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    R.J. Birgeneau, C.W. Garland, G.B. Kasting, B.M. Ocko, Phys. Rev. A 24, 2624 (1981)ADSCrossRefGoogle Scholar
  53. 53.
    P. Oswald, P. Pierański, F. Picano, R. Hołyst, Phys. Rev. Lett. 88, 015503 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    J. Sur, H.K. Pak, Phys. Rev. Lett. 86, 4326 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987)Google Scholar
  56. 56.
    A.B. Basset, A Treatise on Hydrodynamics, Vol. 2 (University of Michigan Library, 1888)Google Scholar
  57. 57.
    P.G. Saffman, M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975)ADSCrossRefGoogle Scholar
  58. 58.
    B.D. Hughes, B.A. Pailthorpe, L.R. White, J. Fluid Mech. 110, 349 (1981)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Z.H. Nguyen, M. Atkinson, C.S. Park, J. Maclennan, M. Glaser, N. Clark, Phys. Rev. Lett. 105, 268304 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    A. Eremin, S. Baumgarten, K. Harth, R. Stannarius, Z.H. Nguyen, A. Goldfain, C.S. Park, J.E. Maclennan, M.A. Glaser, N.A. Clark, Phys. Rev. Lett. 107, 268301 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    Z. Qi, C.S. Park, M.A. Glaser, J.E. Maclennan, N.A. Clark, Phys. Rev. E 93, 012706 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    W.H. de Jeu, Physical Properties of Liquid Crystalline Materials (Gordon and Breach Sci. Publishers, New York, 1980) and references thereinGoogle Scholar
  63. 63.
    E. Petrov, P. Schwille, Biophys. J. 94, L41 (2008)CrossRefGoogle Scholar
  64. 64.
    L. Léger, A. Martinet, J. Phys. (Paris) Colloq. 37, C3-89 (1976)CrossRefGoogle Scholar
  65. 65.
    H. Li, M. Kardar, Phys. Rev. A 46, 6490 (1992)ADSCrossRefGoogle Scholar
  66. 66.
    A. Ajdari, L. Peliti, J. Prost, Phys. Rev. Lett. 66, 1481 (1991)ADSCrossRefGoogle Scholar
  67. 67.
    E.S. Pikina, C. Rosenblatt, Eur. Phys. J. E 35, 87 (2012)CrossRefGoogle Scholar
  68. 68.
    W.H. de Jeu, Basic X-Ray Scattering for Soft Matter (Oxford University Press, 2016)Google Scholar
  69. 69.
    M.S. Turner, M. Maaloum, D. Ausserré, J.-F. Joanny, M. Kunz, J. Phys. II 4, 689 (1994)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Landau Institute for Theoretical Physics of the RASChernogolovkaRussia
  2. 2.Oil and Gas Research InstituteRussian Academy of SciencesMoscowRussia
  3. 3.FSRC “Crystallography and Photonics” of the RASMoscowRussia

Personalised recommendations