A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation

  • Masumeh Foroutan
  • S. Mahmood Fatemi
  • Farshad Esmaeilian
Topical Review

Abstract.

During the past decade, the research on fluids in nanoconfined geometries has received considerable attention as a consequence of their wide applications in different fields. Several nanoconfined systems such as water and ionic liquids, together with an equally impressive array of nanoconfining media such as carbon nanotube, graphene and graphene oxide have received increasingly growing interest in the past years. Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences. Water is often considered as a highly nanoconfined system, due to its reduction to a few layers of water molecules between the extended surface of large macromolecules. The second system discussed here is ionic liquids, which have been widely studied in the modern green chemistry movement. Considering the great importance of ionic liquids in industry, and also their oil/water counterpart, nanoconfined ionic liquid system has become an important area of research with many fascinating applications. Furthermore, the method of molecular dynamics simulation is one of the major tools in the theoretical study of water and ionic liquids in nanoconfinement, which increasingly has been joined with experimental procedures. In this way, the choice of water and ionic liquids in nanoconfinement is justified by applying molecular dynamics simulation approaches in this review article.

Graphical abstract

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

References

  1. 1.
    P. Das, Nanoscale 4, 2931 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    L.B. Krott, M.C. Barbosa, Phys. Rev. E 89, 012110 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    A.C. Fogarty, F.X. Coudert, A. Boutin, D. Laage, ChemPhysChem 15, 521 (2014)CrossRefGoogle Scholar
  4. 4.
    O. Ciftja, Int. Nano Lett. 2, 36 (2012)CrossRefGoogle Scholar
  5. 5.
    M.P. Singh, R.K. Singh, S. Chandra, Prog. Mater. Sci. 64, 73 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Pajzderska, P. Bilski, J. Wasicki, J. Chem. Phys. 142, 084505 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    B. Karimi, A. Zamani, F. Mansouri, RSC Adv. 4, 57639 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Arya, B. Prabhakar, Green Chem. 15, 2885 (2013)CrossRefGoogle Scholar
  9. 9.
    N. Naguib, H. Ye, Y. Gogotsi, A.G. Yazicioglu, C.M. Megaridis, M. Yoshimura, Nano Lett. 4, 2237 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    C.Y. Won, N. Aluru, J. Phys. Chem. C 112, 1812 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Blach, M. Pessêgo, J.J. Silber, N.M. Correa, L. García-Río, R.D. Falcone, Langmuir 30, 12130 (2014)CrossRefGoogle Scholar
  12. 12.
    D.A. Kunz, M.J. Leitl, L. Schade, J. Schmid, B. Bojer, U.T. Schwarz, G.A. Ozin, H. Yersin, J. Breu, Small 11, 792 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Pagliai, G. Cardini, R. Cammi, J. Phys. Chem. A 118, 5098 (2014)CrossRefGoogle Scholar
  14. 14.
    G. Cicero, J.C. Grossman, E. Schwegler, F. Gygi, G. Galli, J. Am. Chem. Soc. 130, 1871 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Ghosh, L. Pradipkanti, V. Rai, D.K. Satapathy, P. Vayalamkuzhi, M. Jaiswal, Appl. Phys. Lett. 106, 241902 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    B. Rossi, V. Venuti, A. Mele, C. Punta, L. Melone, V. Crupi, D. Majolino, F. Trotta, F. D'Amico, A. Gessini, J. Chem. Phys. 142, 014901 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    H. Ōkawa, M. Sadakiyo, K. Otsubo, K. Yoneda, T. Yamada, M. Ohba, H. Kitagawa, Inorg. Chem. 54, 8529 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Renou, A. Szymczyk, G. Maurin, A. Ghoufi, Mol. Simul. 41, 483 (2015)CrossRefGoogle Scholar
  19. 19.
    A.A. Milischuk, B.M. Ladanyi, J. Chem. Phys. 135, 174709 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Q. Li, J. Song, F. Besenbacher, M. Dong, Acc. Chem. Res. 48, 119 (2014)CrossRefGoogle Scholar
  21. 21.
    G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    G. Zuo, R. Shen, W. Guo, Nano Lett. 11, 5297 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    X. Qin, Q. Yuan, Y. Zhao, S. Xie, Z. Liu, Nano Lett. 11, 2173 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    J.P. Hallett, T. Welton, Chem. Rev. 111, 3508 (2011)CrossRefGoogle Scholar
  25. 25.
    S.M. Fatemi, M. Foroutan, J. Nanostruct. Chem. 5, 243 (2015)CrossRefGoogle Scholar
  26. 26.
    T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, K.S. Suh, ACS Nano 5, 436 (2010)CrossRefGoogle Scholar
  27. 27.
    G. Appetecchi, G.-T. Kim, M. Montanino, M. Carewska, R. Marcilla, D. Mecerreyes, I. De Meatza, J. Power Sources 195, 3668 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    G.P. Lau, H.N. Tsao, S.M. Zakeeruddin, M. Grätzel, P.J. Dyson, ACS Appl. Mater. Interfaces 6, 13571 (2014)CrossRefGoogle Scholar
  29. 29.
    S. Perkin, Phys. Chem. Chem. Phys. 14, 5052 (2012)CrossRefGoogle Scholar
  30. 30.
    E.D. Hazelbaker, R. Guillet-Nicolas, M. Thommes, F. Kleitz, S. Vasenkov, Microporous Mesoporous Mater. 206, 177 (2015)CrossRefGoogle Scholar
  31. 31.
    H. Abe, T. Takekiyo, M. Shigemi, Y. Yoshimura, S. Tsuge, T. Hanasaki, K. Ohishi, S. Takata, J.-i. Suzuki, J. Phys. Chem. Lett. 5, 1175 (2014)CrossRefGoogle Scholar
  32. 32.
    H.-P. Steinrück, Phys. Chem. Chem. Phys. 14, 5010 (2012)CrossRefGoogle Scholar
  33. 33.
    C. Merlet, M. Salanne, B. Rotenberg, J. Phys. Chem. C 116, 7687 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Zhu, J. Zhou, X. Lu, X. Guo, L. Lu, Microfluid. Nanofluid. 15, 191 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Foroutan, S. Khoee, Computational Nanotechnology: Modeling and Applications with MATLAB, edited by S.M. Musa (CRC Press, Boca Raton, 2011) p. 251Google Scholar
  36. 36.
    M. Foroutan, S.M. Fatemi, Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa (American Scientific Publishers, Valencia, CA, 2017)Google Scholar
  37. 37.
    M. Tarek, D. Tobias, Phys. Rev. Lett. 88, 138101 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    M.A. Henderson, Surf. Sci. Rep. 46, 1 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    H. Kim, M.D. Annable, P.S.C. Rao, Environ. Sci. Technol. 35, 4457 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Rudich, I. Benjamin, R. Naaman, E. Thomas, S. Trakhtenberg, R. Ussyshkin, J. Phys. Chem. A 104, 5238 (2000)CrossRefGoogle Scholar
  41. 41.
    V. Buch, J.P. Devlin, Water in Confining Geometries (Springer Science & Business Media, 2013)Google Scholar
  42. 42.
    L.B. Da Silva, J. Nanostruct. Chem. 4, 1 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    S.M. Fatemi, M. Foroutan, Adv. Sci. Eng. Med. 6, 583 (2014)CrossRefGoogle Scholar
  44. 44.
    S.M. Fatemi, M. Foroutan, J. Theor. Comput. Chem. 13, 1450063 (2014)CrossRefGoogle Scholar
  45. 45.
    S.M. Fatemi, M. Foroutan, J. Iran. Chem. Soc. 12, 1905 (2015)CrossRefGoogle Scholar
  46. 46.
    S.M. Fatemi, M. Foroutan, J. Nanostruct. Chem. 6, 29 (2016)CrossRefGoogle Scholar
  47. 47.
    S.M. Fatemi, M Foroutan, J. Iran. Chem. Soc. 14, 269 (2017)CrossRefGoogle Scholar
  48. 48.
    S.M. Fatemi, M. Foroutan, J. Adv. Phys. 5, 129 (2016)CrossRefGoogle Scholar
  49. 49.
    S.M. Fatemi, M. Foroutan, J. Colloid Sci. Biotechnol. 2, 40 (2013)CrossRefGoogle Scholar
  50. 50.
    X. Liu, X. Pan, S. Zhang, X. Han, X. Bao, Langmuir 30, 8036 (2014)CrossRefGoogle Scholar
  51. 51.
    J.C. Rasaiah, S. Garde, G. Hummer, Annu. Rev. Phys. Chem. 59, 713 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    A. Alexiadis, S. Kassinos, Chem. Rev. 108, 5014 (2008)CrossRefGoogle Scholar
  53. 53.
    Q. Chen, Q. Wang, Y.-C. Liu, T. Wu, J. Chem. Phys. 140, 214507 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    M.K. Tripathy, N.K. Jena, A.K. Samanta, S.K. Ghosh, K. Chandrakumar, Theor. Chem. Acc. 133, 1 (2014)CrossRefGoogle Scholar
  55. 55.
    Y.-g. Zheng, H.-f. Ye, Z.-q. Zhang, H.-w. Zhang, Phys. Chem. Chem. Phys. 14, 964 (2012)CrossRefGoogle Scholar
  56. 56.
    J.K. Clark II, S.J. Paddison, Phys. Chem. Chem. Phys. 16, 17756 (2014)CrossRefGoogle Scholar
  57. 57.
    S. Li, B. Schmidt, Phys. Chem. Chem. Phys. 17, 7303 (2015)CrossRefGoogle Scholar
  58. 58.
    B. Mukherjee, P.K. Maiti, C. Dasgupta, A. Sood, J. Chem. Phys. 126, 124704 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    A. Striolo, Nano Lett. 6, 633 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    H. Kumar, B. Mukherjee, S.-T. Lin, C. Dasgupta, A. Sood, P.K. Maiti, J. Chem. Phys. 134, 124105 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    B. Mukherjee, P.K. Maiti, C. Dasgupta, A. Sood, J. Phys. Chem. B 113, 10322 (2009)CrossRefGoogle Scholar
  62. 62.
    J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Science 312, 1034 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    J.A. Thomas, A.J. McGaughey, Nano Lett. 8, 2788 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    F. Taghavi, S. Javadian, S.M. Hashemianzadeh, J. Mol. Graph. Modell. 44, 33 (2013)CrossRefGoogle Scholar
  65. 65.
    T.A. Pascal, W.A. Goddard, Y. Jung, Proc. Natl. Acad. Sci. (U.S.A.) 108, 11794 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    W.H. Noon, K.D. Ausman, R.E. Smalley, J. Ma, Chem. Phys. Lett. 355, 445 (2002)ADSCrossRefGoogle Scholar
  67. 67.
    D.W. Boukhvalov, M.I. Katsnelson, Y.-W. Son, Nano Lett. 13, 3930 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    A. Tahat, J. Martí, Phys. Rev. E 92, 032402 (2015)ADSCrossRefGoogle Scholar
  69. 69.
    K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.a. Dubonos, I. Grigorieva, A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff, J. Am. Chem. Soc. 133, 2816 (2011)CrossRefGoogle Scholar
  71. 71.
    R. Song, W. Feng, C.A. Jimenez-Cruz, B. Wang, W. Jiang, Z. Wang, R. Zhou, RSC Adv. 5, 274 (2015)CrossRefGoogle Scholar
  72. 72.
    S. Pařez, M. Předota, Phys. Chem. Chem. Phys. 14, 3640 (2012)CrossRefGoogle Scholar
  73. 73.
    D.J. Bonthuis, S. Gekle, R.R. Netz, Phys. Rev. Lett. 107, 166102 (2011)ADSCrossRefGoogle Scholar
  74. 74.
    Z. Zhang, P. Fenter, L. Cheng, N. Sturchio, M. Bedzyk, M. Predota, A. Bandura, J. Kubicki, S. Lvov, P. Cummings, Langmuir 20, 4954 (2004)CrossRefGoogle Scholar
  75. 75.
    J. Marti, J. Sala, E. Guardia, J. Mol. Liq. 153, 72 (2010)CrossRefGoogle Scholar
  76. 76.
    H. Eslami, N. Heydari, J. Nanopart. Res. 16, 1 (2014)CrossRefGoogle Scholar
  77. 77.
    R. Guégan, J. Colloid Interface Sci. 358, 485 (2011)CrossRefGoogle Scholar
  78. 78.
    S.A. Deshmukh, G. Kamath, G.A. Baker, A.V. Sumant, S.K. Sankaranarayanan, Surf. Sci. 609, 129 (2013)ADSCrossRefGoogle Scholar
  79. 79.
    A.A. Chialvo, L. Vlcek, P.T. Cummings, J. Phys. Chem. C 118, 19701 (2014)CrossRefGoogle Scholar
  80. 80.
    M. Zokaie, M. Foroutan, RSC Adv. 5, 39330 (2015)CrossRefGoogle Scholar
  81. 81.
    M. Zokaie, M. Foroutan, RSC Adv. 5, 97446 (2015)CrossRefGoogle Scholar
  82. 82.
    W.-H. Zhao, L. Wang, J. Bai, L.-F. Yuan, J. Yang, X.C. Zeng, Acc. Chem. Res. 47, 2505 (2014)CrossRefGoogle Scholar
  83. 83.
    M. Foroutan, S.M. Fatemi, F. Shokouh, J. Mol. Graphics Modell. 66, 85 (2016)CrossRefGoogle Scholar
  84. 84.
    M. Erko, G. Findenegg, N. Cade, A. Michette, O. Paris, Phys. Rev. B 84, 104205 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    A. Schreiber, I. Ketelsen, G.H. Findenegg, Phys. Chem. Chem. Phys. 3, 1185 (2001)CrossRefGoogle Scholar
  86. 86.
    J.P. Layfield, D. Troya, J. Phys. Chem. B 115, 4662 (2011)CrossRefGoogle Scholar
  87. 87.
    Y. Hu, D. Devegowda, A. Striolo, A. Phan, T.A. Ho, F. Civan, R. Sigal, J. Unconvent. Oil Gas Res. 9, 31 (2015)CrossRefGoogle Scholar
  88. 88.
    D. Hou, T. Zhao, H. Ma, Z. Li, J. Phys. Chem. C 119, 1346 (2015)CrossRefGoogle Scholar
  89. 89.
    R. Gnanasekaran, Y. Xu, D.M. Leitner, J. Phys. Chem. B 114, 16989 (2010)CrossRefGoogle Scholar
  90. 90.
    M. Ding, A. Szymczyk, F. Goujon, A. Soldera, A. Ghoufi, J. Membr. Sci. 458, 236 (2014)CrossRefGoogle Scholar
  91. 91.
    N. Giovambattista, P.G. Debenedetti, P.J. Rossky, J. Phys. Chem. B 111, 9581 (2007)CrossRefGoogle Scholar
  92. 92.
    N. Choudhury, Chem. Phys. 421, 68 (2013)ADSCrossRefGoogle Scholar
  93. 93.
    M. Springborg, R. Paul, G. Maroulis, B. Kirchner, S. Roy, G. Wu, P. Sarkar, A. Savin, Chemical Modelling: Applications and Theory (Royal Society of Chemistry, 2012)Google Scholar
  94. 94.
    G.B. Reddy, A. Madhusudhan, D. Ramakrishna, D. Ayodhya, M. Venkatesham, G. Veerabhadram, J. Nanostruct. Chem. 5, 185 (2015)CrossRefGoogle Scholar
  95. 95.
    N. Salem, Y. Abu-Lebdeh, J. Electrochem. Soc. 161, A1593 (2014)CrossRefGoogle Scholar
  96. 96.
    X.-X. Zhang, M. Liang, N.P. Ernsting, M. Maroncelli, J. Phys. Chem. Lett. 4, 1205 (2013)CrossRefGoogle Scholar
  97. 97.
    A. Nath, A. Kumar, Electrochim. Acta 129, 177 (2014)CrossRefGoogle Scholar
  98. 98.
    G.-T. Kim, S. Jeong, M.-Z. Xue, A. Balducci, M. Winter, S. Passerini, F. Alessandrini, G. Appetecchi, J. Power Sources 199, 239 (2012)CrossRefGoogle Scholar
  99. 99.
    J. Vatamanu, Z. Hu, D. Bedrov, C. Perez, Y. Gogotsi, J. Phys. Chem. Lett. 4, 2829 (2013)CrossRefGoogle Scholar
  100. 100.
    E. van de Ven, A. Chairuna, G. Merle, S.P. Benito, Z. Borneman, K. Nijmeijer, J. Power Sources 222, 202 (2013)CrossRefGoogle Scholar
  101. 101.
    Y.-H. Chang, P.-Y. Lin, S.-R. Huang, K.-Y. Liu, K.-F. Lin, J. Mater. Chem. 22, 15592 (2012)CrossRefGoogle Scholar
  102. 102.
    R. Gao, D. Wang, J.R. Heflin, T.E. Long, J. Mater. Chem. 22, 13473 (2012)CrossRefGoogle Scholar
  103. 103.
    G.K. Dedzo, S. Letaief, C. Detellier, J. Mater. Chem. 22, 20593 (2012)CrossRefGoogle Scholar
  104. 104.
    M. Mohammadi, M. Foroutan, J. Mol. Liq. 193, 60 (2014)CrossRefGoogle Scholar
  105. 105.
    Y. Luo, Q. Wang, Q. Lu, Q. Mu, D. Mao, Environ. Sci. Technol. Lett. 1, 266 (2014)CrossRefGoogle Scholar
  106. 106.
    N. Yaghini, J. Pitawala, A. Matic, A. Martinelli, J. Phys. Chem. B 119, 1611 (2015)CrossRefGoogle Scholar
  107. 107.
    R. Macfarlaned, J. Golding, S. Forsyth, Chem. Com. 16, 1430 (2001)CrossRefGoogle Scholar
  108. 108.
    R. Hagiwara, K. Tamaki, K. Kubota, T. Goto, T. Nohira, J. Chem. Eng. Data 53, 355 (2008)CrossRefGoogle Scholar
  109. 109.
    R. Göbel, P. Hesemann, J. Weber, E. Möller, A. Friedrich, S. Beuermann, A. Taubert, Phys. Chem. Chem. Phys. 11, 3653 (2009)CrossRefGoogle Scholar
  110. 110.
    N. Jain, A. Kumar, S. Chauhan, S. Chauhan, Tetrahedron 61, 1015 (2005)CrossRefGoogle Scholar
  111. 111.
    M.K. Muthayala, B.S. Chhikara, K. Parang, A. Kumar, ACS Comb. Sci. 14, 60 (2011)CrossRefGoogle Scholar
  112. 112.
    M.K. Muthayala, A. Kumar, ACS Comb. Sci. 14, 5 (2011)CrossRefGoogle Scholar
  113. 113.
    B.C. Ranu, S. Banerjee, Org. Lett. 7, 3049 (2005)CrossRefGoogle Scholar
  114. 114.
    A. Kumar, M.K. Muthyala, Tetrahedron Lett. 52, 5368 (2011)CrossRefGoogle Scholar
  115. 115.
    F. Meersman, C. Dirix, S. Shipovskov, N.L. Klyachko, K. Heremans, Langmuir 21, 3599 (2005)CrossRefGoogle Scholar
  116. 116.
    D. Seth, A. Chakraborty, P. Setua, N. Sarkar, Langmuir 22, 7768 (2006)CrossRefGoogle Scholar
  117. 117.
    K.A. Fletcher, S. Pandey, Langmuir 20, 33 (2004)CrossRefGoogle Scholar
  118. 118.
    M. Kanakubo, Y. Hiejima, K. Minami, T. Aizawa, H. Nanjo, Chem. Commun. (17), 1828 (2006) DOI:10.1039/B600074F
  119. 119.
    F. Shi, Y. Deng, Spectrochim. Acta A 62, 239 (2005)ADSCrossRefGoogle Scholar
  120. 120.
    S. Letaief, T.A. Elbokl, C. Detellier, J. Colloid Interface Sci. 302, 254 (2006)CrossRefGoogle Scholar
  121. 121.
    H. Gao, J. Li, B. Han, W. Chen, J. Zhang, R. Zhang, D. Yan, Phys. Chem. Chem. Phys. 6, 2914 (2004)CrossRefGoogle Scholar
  122. 122.
    R. Singh, J. Monk, F.R. Hung, J. Phys. Chem. C 114, 15478 (2010)CrossRefGoogle Scholar
  123. 123.
    Q. Dou, M. Sha, H. Fu, G. Wu, J. Phys. Chem. C 115, 18946 (2011)CrossRefGoogle Scholar
  124. 124.
    S. Chen, K. Kobayashi, Y. Miyata, N. Imazu, T. Saito, R. Kitaura, H. Shinohara, J. Am. Chem. Soc. 131, 14850 (2009)CrossRefGoogle Scholar
  125. 125.
    S. Chen, G. Wu, M. Sha, S. Huang, J. Am. Chem. Soc. 129, 2416 (2007)CrossRefGoogle Scholar
  126. 126.
    M.A. Balazadeh, M. Foroutan, Fluid Phase Equilib. 356, 63 (2013)CrossRefGoogle Scholar
  127. 127.
    H. Akbarzadeh, M. Abbaspour, S. Salemi, S. Abdollahzadeh, RSC Adv. 5, 3868 (2015)CrossRefGoogle Scholar
  128. 128.
    T. Méndez-Morales, J. Carrete, M. Pérez-Rodríguez, Ó. Cabeza, L.J. Gallego, R.M. Lynden-Bell, L.M. Varela, Phys. Chem. Chem. Phys. 16, 13271 (2014)CrossRefGoogle Scholar
  129. 129.
    R. Singh, N.N. Rajput, X. He, J. Monk, F.R. Hung, Phys. Chem. Chem. Phys. 15, 16090 (2013)CrossRefGoogle Scholar
  130. 130.
    N.N. Rajput, J. Monk, R. Singh, F.R. Hung, J. Phys. Chem. C 116, 5169 (2012)CrossRefGoogle Scholar
  131. 131.
    N.N. Rajput, J. Monk, F.R. Hung, J. Phys. Chem. C 118, 1540 (2014)CrossRefGoogle Scholar
  132. 132.
    N.N. Rajput, J. Monk, F.R. Hung, J. Phys. Chem. C 116, 14504 (2012)CrossRefGoogle Scholar
  133. 133.
    M.V. Fedorov, R. Lynden-Bell, Phys. Chem. Chem. Phys. 14, 2552 (2012)CrossRefGoogle Scholar
  134. 134.
    M. Sha, G. Wu, Y. Liu, Z. Tang, H. Fang, J. Phys. Chem. C 113, 4618 (2009)CrossRefGoogle Scholar
  135. 135.
    C. Pinilla, M.G. Del Pópolo, R.M. Lynden-Bell, J. Kohanoff, J. Phys. Chem. B 109, 17922 (2005)CrossRefGoogle Scholar
  136. 136.
    Y. Shim, H.J. Kim, Y. Jung, Faraday Discuss. 154, 249 (2012)ADSCrossRefGoogle Scholar
  137. 137.
    M. Alibalazadeh, M. Foroutan, J. Mol. Model. 21, 1 (2015)CrossRefGoogle Scholar
  138. 138.
    S. Salemi, H. Akbarzadeh, S. Abdollahzadeh, J. Mol. Liq. 215, 512 (2016)CrossRefGoogle Scholar
  139. 139.
    A.K. Gupta, Y.L. Verma, R.K. Singh, S. Chandra, J. Phys. Chem. C 118, 1530 (2014)CrossRefGoogle Scholar
  140. 140.
    G. Ori, F. Villemot, L. Viau, A. Vioux, B. Coasne, Mol. Phys. 112, 1350 (2014)ADSCrossRefGoogle Scholar
  141. 141.
    G. Ori, C. Massobrio, A. Pradel, M. Ribes, B. Coasne, Langmuir 31, 6742 (2015)CrossRefGoogle Scholar
  142. 142.
    F.F. Canova, H. Matsubara, M. Mizukami, K. Kurihara, A.L. Shluger, Phys. Chem. Chem. Phys. 16, 8247 (2014)CrossRefGoogle Scholar
  143. 143.
    L.E. Ficke, J.F. Brennecke, J. Phys. Chem. B 114, 10496 (2010)CrossRefGoogle Scholar
  144. 144.
    W. Jiang, Y. Wang, G.A. Voth, J. Phys. Chem. B 111, 4812 (2007)CrossRefGoogle Scholar
  145. 145.
    M.G. Freire, C.M. Neves, P.J. Carvalho, R.L. Gardas, A.M. Fernandes, I.M. Marrucho, L.M. Santos, J.A. Coutinho, J. Phys. Chem. B 111, 13082 (2007)CrossRefGoogle Scholar
  146. 146.
    Y. Li, L.-S. Wang, S.-F. Cai, J. Chem. Eng. Data 55, 5289 (2010)CrossRefGoogle Scholar
  147. 147.
    S. Feng, G.A. Voth, Fluid Phase Equilib. 294, 148 (2010)CrossRefGoogle Scholar
  148. 148.
    T. Méndez-Morales, J. Carrete, O. Cabeza, L.J. Gallego, L.M. Varela, J. Phys. Chem. B 115, 6995 (2011)CrossRefGoogle Scholar
  149. 149.
    A.K. Gupta, M.P. Singh, R.K. Singh, S. Chandra, Dalton Trans. 41, 6263 (2012)CrossRefGoogle Scholar
  150. 150.
    A.K. Gupta, R.K. Singh, S. Chandra, RSC Adv. 4, 22277 (2014)CrossRefGoogle Scholar
  151. 151.
    A.K. Gupta, R.K. Singh, S. Chandra, RSC Adv. 3, 13869 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Masumeh Foroutan
    • 1
  • S. Mahmood Fatemi
    • 1
  • Farshad Esmaeilian
    • 1
  1. 1.Department of Physical Chemistry, School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations