Curvature effects on the velocity profile in turbulent pipe flow

Regular Article

Abstract.

Prandtl and von Kármán have developed the famous log-law for the mean velocity profile for turbulent flow over a plate. The log-law has also been applied to turbulent pipe flow, though the wall surface is curved (in span-wise direction) and has finite diameter. Here we discuss the theoretical framework, based on the Navier-Stokes equations, with which one can describe curvature effects and also the well-known finite-size effects in the turbulent mean-velocity profile. When comparing with experimental data we confirm that the turbulent eddy viscosity must contain both curvature and finite-size contributions and that the usual ansatz for the turbulent eddy viscosity as being linear in the wall distance is insufficient, both for small and large wall distances. We analyze the experimental velocity profile in terms of an r-dependent generalized turbulent viscosity \(\nu_{turb} \equiv u_{\ast} a g(\rho /a)\) (with \(\rho\) being the wall distance, a pipe radius, u* shear stress velocity, and g(\(\rho\)/a) the nondimensionalized viscosity), which reflects the radially strongly varying radial eddy transport of the axial velocity. After the near wall linear viscous sublayer, which soon sees the pipe wall's curvature, a strong transport (eddy) activity steepens the profile considerably, leading to a maximum in g(\(\rho\)/a) at about half radius, then decreasing again towards the pipe center. This reflects the smaller eddy transport effect near the pipe's center, where even in strongly turbulent flow (the so-called “ultimate state”) the profile remains parabolic. The turbulent viscous transport is strongest were the deviations of the profile from parabolic are strongest, and this happens in the range around half radius.

Graphical abstract

Keywords

Flowing matter: Nonlinear Physics 

References

  1. 1.
    H. Tennekes, J.L. Lumley, A first course in turbulence (The MIT Press, Cambridge, Massachusetts, 1972)Google Scholar
  2. 2.
    H. Schlichting, Boundary layer theory, 7th ed. (McGraw Hill, New York, 1979)Google Scholar
  3. 3.
    A.A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1976)Google Scholar
  4. 4.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987). Google Scholar
  5. 5.
    H. Schlichting, K. Gersten, Boundary layer theory, 8th ed. (Springer Verlag, Berlin, 2000)Google Scholar
  6. 6.
    S.B. Pope, Turbulent Flow (Cambridge University Press, Cambridge, 2000)Google Scholar
  7. 7.
    H. Reichardt, Z. Angew. Math. Mech. 31, 108 (1951)Google Scholar
  8. 8.
    D.B. Spalding, J. Appl. Mech. 28, 455 (1961)ADSCrossRefGoogle Scholar
  9. 9.
    R.L. Panton, J. Fluid Eng. 119, 325 (1997)CrossRefGoogle Scholar
  10. 10.
    N. Afzal, K. Yajnik, J. Fluid Mech. 61, 23 (1973)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Mizuno, J. Jimenez, Phys. Fluids 23, 085112 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Pirozzoli, J. Fluid Mech. 745, 378 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    J.O. Hinze, Turbulence (McGraw-Hill, New York, 1975)Google Scholar
  14. 14.
    C.B. Millikan, in Proceedings of the 5th Int. Congr. Appl. Mech. (Wiley/Chapman and Hall, New York, 1938) p. 386Google Scholar
  15. 15.
    I. Marusic, B.J. McKeon, P.A. Monkewitz, H.M. Nagib, A.J. Smits, K.R. Sreenivasan, Phys. Fluids 22, 065103 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Smits, B.J. McKeon, I. Marusic, Annu. Rev. Fluid Mech. 43, 353 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    X. Wu, J.R. Baltzer, R.J. Adrian, J. Fluid Mech. 698, 235 (2012)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Jimenez, Annu. Rev. Fluid Mech. 44, 27 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Hultmark, M. Vallikivi, S.C.C. Bailey, A.J. Smits, Phys. Rev. Lett. 108, 094501 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J. Jimenez, Phys. Fluids 25, 101302 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    S.C.C. Bailey, M. Hultmark, J.P. Monty, P.H. Alfredsson, M.S. Chong, R.D. Duncan, J.H.M. Fransson, N. Hutchins, I. Marusic, B.J. McKeon, H.M. Nagib, R. Orlu, A. Segalini, A.J. Smits, R. Vinuesa, J. Fluid Mech. 715, 642 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    M. Hultmark, M. Vallikivi, S.C.C. Bailey, A.J. Smits, J. Fluid. Mech. 728, 376 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    I. Marusic, J.P. Monty, M. Hultmark, A.J. Smits, J. Fluid. Mech. 716, R3 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    A.J. Smits, I. Marusic, Phys. Today 66, 25 (2013)CrossRefGoogle Scholar
  25. 25.
    S.C.C. Bailey, M. Vallikivi, M. Hultmark, A.J. Smits, J. Fluid Mech. 749, 79 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    S. Grossmann, D. Lohse, C. Sun, Phys. Fluids 26, 025114 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    P.R. Spalart, J. Fluid Mech. 187, 61 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    S. Grossmann, D. Lohse, Phys. Fluids 24, 125103 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    A.E. Perry, M.S. Chong, J. Fluid Mech. 119, 106 (1982)CrossRefGoogle Scholar
  30. 30.
    A.E. Perry, I. Marusic, J. Fluid Mech. 298, 361 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    C.M. de Silva, I. Marusic, J.D. Woodcock, C. Meneveau, J. Fluid Mech. 769, 654 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    C. Meneveau, I. Marusic, J. Fluid Mech. 719, R1 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    X.I.A. Yang, I. Marusic, C. Meneveau, J. Fluid Mech. 791, R2 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    B. Eckhardt, S. Grossmann, D. Lohse, J. Fluid Mech. 581, 221 (2007)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    S. Grossmann, D. Lohse, A. Reeh, Phys. Fluids 9, 3817 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    M. Vallikivi, M. Hultmark, S.C.C. Bailey, A.J. Smits, Exp. Fluids 51, 1521 (2011)CrossRefGoogle Scholar
  37. 37.
    S.C.C. Bailey, G.J. Kunkel, M. Hultmark, M. Vallikivi, J. Hill, K. Meyer, C.B. Arnold, A.J. Smits, J. Fluid Mech. 663, 160 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    M.V. Zagarola, A.J. Smits, J. Fluid Mech. 373, 33 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    M.V. Zagarola, Ph.D. thesis, Princeton University, 1996Google Scholar
  40. 40.
    S. Grossmann, D. Lohse, Phys. Fluids 23, 045108 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    D. Coles, J. Fluid Mech. 1, 191 (1956)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Fachbereich Physik der Philipps-UniversitätMarburgGermany
  2. 2.Physics of Fluids Group, Department of Science and TechnologyMesa+ Institute, and J.M. Burgers Center for Fluid Dynamics, University of TwenteAE EnschedeThe Netherlands
  3. 3.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations