Convection of a colloidal suspension in a Hele-Shaw cell

  • B. L. Smorodin
  • I. N. Cherepanov
  • S. N. Ishutov
  • B. I. Myznikova
Regular Article
Part of the following topical collections:
  1. Non-isothermal transport in complex fluids

Abstract.

The results of a theoretical study are presented dealing with convective heat and mass transfer in a colloidal suspension through a Hele-Shaw cell heated from below. The numerical analysis, based on a multi-component model, reveals that for a certain range of parameter values the dynamical regimes of travelling waves as well as oscillatory fingering formation are stable. The bifurcation phenomena and nonlinear evolution of spatiotemporal patterns that develop in the colloid suspension are modeled and discussed, paying special attention to the combined effects of gravity sedimentation, thermal diffusion with positive separation ratio and convection.

Graphical abstract

Keywords

Topical Issue: Non-isothermal transport in complex fluids 

References

  1. 1.
    T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996)Google Scholar
  3. 3.
    J. Buongiorno, Trans. ASME, J. Heat Transf. 128, 240 (2006)CrossRefGoogle Scholar
  4. 4.
    G. Ciccotti, M. Ferrario, Ch. Schütte (Editors), Molecular Dynamics Simulation (MDPI, Basel, Beijing, 2014)Google Scholar
  5. 5.
    H. Tanaka, T. Araki, Phys. Rev. Lett. 85, 1338 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    H. Löwen, Soft Matter 6, 3133 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A. Podolny, A. Nepomnyashchy, A. Oron, in Thermal Nonequilibrium, Lecture Notes of the 8th International Meeting on Thermodiffusion, edited by S. Wiegand, W. Köhler, J.K.G. Dhont, Vol. 3 (Key Technologies, Jülich, 2008) p. 235Google Scholar
  8. 8.
    W. Köhler, K. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    M.I. Shliomis, M. Souhar, Europhys. Lett. 49, 55 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    M.I. Shliomis, B.L. Smorodin, S. Kamiyama, Philos. Mag. 83, 2139 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    M.I. Shliomis, B.L. Smorodin, Phys. Rev. E 71, 036312 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    B.L. Smorodin, I.N. Cherepanov, B.I. Myznikova, M.I. Shliomis, Phys. Rev. E 84, 026305 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    B.L. Smorodin, I.N. Cherepanov, Eur. Phys. J. E 37, 118 (2014)CrossRefGoogle Scholar
  14. 14.
    B. Huke, H. Pleiner, M. Lücke, Phys. Rev. E 75, 036203 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    R. Cerbino, A. Vailati, M. Giglio, Phys. Rev. E 66, 055301 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    R. Cerbino, A. Vailati, M. Giglio, Philos. Mag. 83, 2023 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    S. Mazzoni, R. Cerbino, D. Brogioli, A. Vailati, M. Giglio, Eur. Phys. J. E 15, 305 (2004)CrossRefGoogle Scholar
  18. 18.
    R. Cerbino, S. Mazzoni, A. Vailati, M. Giglio, Phys. Rev. Lett. 94, 064501 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    G. Donzelli, R. Cerbino, A. Vailati, Phys. Rev. Lett. 102, 104503 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    M. Bernardin, F. Comitani, A. Vailati, Phys. Rev. E 85, 066321 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    B.H. Chang, A.F. Mills, E. Hernandez, Int. J. Heat Mass Transf. 51, 1332 (2008)CrossRefGoogle Scholar
  22. 22.
    H.S. Hele-Shaw, Nature 58, 34 (1898)ADSCrossRefGoogle Scholar
  23. 23.
    H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1993)Google Scholar
  24. 24.
    B.I. Myznikova, in Studies on natural convection and conductive heat transfer (Ural Branch Acad. Sci. USSR, Sverdlovsk, 1981) p. 23 (in Russian)Google Scholar
  25. 25.
    K.A. Gavrilov, V.A. Demin, G.F. Putin, Tech. Phys. Lett. 36, 181 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    D. Yadav, M.C. Kim, Comput. Fluids 117, 139 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    M.C. Kim, Korean J. Chem. Eng. 34, 189 (2017)CrossRefGoogle Scholar
  28. 28.
    F. Winkel, S. Messlinger, W. Schöpf, I. Rehberg, M. Siebenbürger, M. Ballauff, New J. Phys. 12, 053003 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    S. Messlinger, C. Kramer, J.J. Schmied, F. Winkel, W. Schöpf, I. Rehberg, Phys. Rev. E 88, 053019 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    J.K. Platten, J.C. Legros, Convection in Liquids (Springer-Verlag, Berlin, Heidelberg, 1984)Google Scholar
  31. 31.
    L.D. Landau, E.M. Lifschits, Course of Theoretical Physics, Vol. 6 (Pergamon Press, Oxford, 1993)Google Scholar
  32. 32.
    I.I. Ryzhkov, I.V. Stepanova, Int. J. Heat Mass Transf. 86, 268 (2015)CrossRefGoogle Scholar
  33. 33.
    L.V. Kantorovich, V.I. Krylov, Approximate Methods of Higher Analysis (Groningen, Noordhoff, 1958)Google Scholar
  34. 34.
    P.J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, New Mexico, 1976)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • B. L. Smorodin
    • 1
  • I. N. Cherepanov
    • 2
  • S. N. Ishutov
    • 1
  • B. I. Myznikova
    • 3
  1. 1.Department of Physics of Phase TransitionsPerm State UniversityPermRussia
  2. 2.Department of Radio Electronics and Information SecurityPerm State UniversityPermRussia
  3. 3.Ural Branch of Russian Academy of SciencesInstitute of Continuous Media MechanicsPermRussia

Personalised recommendations