Why granular media are thermal, and quite normal, after all

Regular Article

Abstract.

Two approaches exist to account for granular dynamics: The athermal one takes grains as elementary, the thermal one considers the total entropy that includes microscopic degrees of freedom such as phonons and electrons. Discrete element method (DEM), granular kinetic theory and athermal statistical mechanics (ASM) belong to the first, granular solid hydrodynamics (GSH) to the second one. A discussion of the conceptual differences between both is given here, leading, among others, to the following insights: 1) While DEM and granular kinetic theory are well justified to take grains as athermal, any entropic consideration is far less likely to succeed. 2) In addition to modeling grains as a gas of dissipative, rigid mass points, it is very helpful take grains as a thermal solid that has been sliced and diced. 3) General principles that appear invalid in granular media are repaired and restored once the true entropy is included. These abnormalities (such as invalidity of the fluctuation-dissipation theorem, granular temperatures failing to equilibrate, and grains at rest unable to explore the phase space) are consequences of the athermal approximation, not properties of granular media.

Graphical abstract

Keywords

Flowing Matter: Granular Matter 

References

  1. 1.
    P.A. Cundall, O.D.L. Strack, Geotechnique 29, 47 (1979)CrossRefGoogle Scholar
  2. 2.
    H.J. Herrmann, S. Luding, Continuum Mech. Thermodyn. 10, 189 (1998)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    J.N. Roux, AIP Conf. Proc. 1542, 46 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    P.K. Haff, J. Fluid Mech. Digital Archive 134, 401 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    J.T. Jenkins, S.B. Savage, J. Fluid Mech. 130, 187 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    S.B. Savage, Adv. Appl. Mech. 24, 289 (1984)CrossRefGoogle Scholar
  7. 7.
    C.S. Campbell, Annu. Rev. Fluid Mech. 22, 57 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    I. Goldhirsch, Chaos 9, 659 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S.F. Edwards, R.B.S. Oakeshott, Physica A 157, 1080 (1989)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Blumenfeld, J.F. Jordan, S.F. Edwards, Phys. Rev. Lett. 109, 238001 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    P. Richard, M. Nicodemi, R. Delannay, P. Ribiere, D. Bideau, Nature 4, 121 (2005)CrossRefGoogle Scholar
  13. 13.
    A. Baldassarri, A. Barrat, G. DAnna, V. Loreto, P. Mayor, A. Puglisi, J. Phys.: Condens. Matter 17, S2405 (2005)ADSGoogle Scholar
  14. 14.
    Dapeng Bi, Silke Henkes, Karen E. Daniels, Bulbul Chakraborty, Annu. Review Condens. Matter Phys. 6, 63 (2015) or arXiv:1404.1854, 2014ADSCrossRefGoogle Scholar
  15. 15.
    Y.M. Jiang, M. Liu, Eur. Phys. J. E 22, 255 (2007)CrossRefGoogle Scholar
  16. 16.
    Y.M. Jiang, M. Liu, Granular Matter 11, 139 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.M. Jiang, M. Liu, in Mechanics of Natural Solids, edited by D. Kolymbas, G. Viggiani (Springer, 2009) pp. 27--46Google Scholar
  18. 18.
    Y.M. Jiang, M. Liu, Acta Mech. 225, 2363 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Gudehus, Y.M. Jiang, M. Liu, Granular Matter 1304, 319 (2011)CrossRefGoogle Scholar
  20. 20.
    Y.M. Jiang, M. Liu, Phys. Rev. Lett. 91, 144301 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Y.M. Jiang, M. Liu, Phys. Rev. Lett. 93, 148001 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Y.M. Jiang, M. Liu, Phys. Rev. Lett. 99, 105501 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    D.O. Krimer, M. Pfitzner, K. Bruer, Y. Jiang, M. Liu, Phys. Rev. E 74, 061310 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    K. Bruer, M. Pfitzner, D.O. Krimer, M. Mayer, Y. Jiang, M. Liu, Phys. Rev. E 74, 061311 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Y.M. Jiang, M. Liu, Phys. Rev. E 77, 021306 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Y.M. Jiang, M. Liu, AIP Conf. Proc. 1145, 1096 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    M. Mayer, M. Liu, Phys. Rev. E 82, 042301 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    D. Krimer, S. Mahle, M. Liu, Phys. Rev. E 86, 061312 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Y.M. Jiang, H.P. Zheng, Z. Peng, L.P. Fu, S.X. Song, Q.C. Sun, M. Mayer, M. Liu, Phys. Rev. E 85, 051304 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Q. Zhang, Y.C. Li, M.Y. Hou, Y.M. Jiang, M. Liu, Phys. Rev. E 85, 031306 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Jiang, M. Liu, Granul. Matter 15, 237 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Yimin Jiang, Mario Liu, AIP Conf. Proc. 1542, 52 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Y.M. Jiang, M. Liu, Eur. Phys. J. E 38, 15 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    D. Kolymbas, Introduction to Hypoplasticity (Balkema, Rotterdam, 2000)Google Scholar
  35. 35.
    W. Wu, D. Kolymbas, Constitutive Modelling of Granular Materials (Springer, Berlin, 2000)Google Scholar
  36. 36.
    D.L. Henann, K. Kamrin, Proc. Natl. Acad. Sci. U.S.A. 110, 6730 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    K. Kamrin, G. Koval, Phys. Rev. Lett. 108, 178301 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    GDR MiDi, Eur. Phys. J. E 14, 341 (2004)CrossRefGoogle Scholar
  39. 39.
    Yoël Forterre, Olivier Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Forterre, O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    D.P. Bi, J. Chang, B. Chakraborty, R.P. Behringer, Nature 480, 355 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Somayeh Farhadi, Robert P. Behringer, Phys. Rev. Lett. 112, 148301 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    N. Kumar, Stefan Luding, Granular Matter 18, 58 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Luding, Nat. Phys. 12, 531 (2016)CrossRefGoogle Scholar
  45. 45.
    Van Bau Nguyen, Thierry Darnige, Ary Bruand, Eric Clement, Phys. Rev. Lett. 107, 138303 (2011)CrossRefGoogle Scholar
  46. 46.
    I.M. Khalatnikov, Introduction to the Theory of Superfluidity (Benjamin, New York, 1965)Google Scholar
  47. 47.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, 1987)Google Scholar
  48. 48.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993)Google Scholar
  49. 49.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966)ADSCrossRefGoogle Scholar
  50. 50.
    T. Wichtmann, A. Niemunis, T. Triantafyllidis, Int. J. Numer. Anal. Meth. Geomech. 34, 440 (2010)Google Scholar
  51. 51.
    I.F. Collins, G.T. Houlsby, Proc. R. Soc. London, Ser. A 453, 1975 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    H. Temmen, H. Pleiner, M. Liu, H.R. Brand, Phys. Rev. Lett. 84, 3228 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    H. Temmen, H. Pleiner, M. Liu, H.R. Brand, Phys. Rev. Lett. 86, 745 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    Oliver Müller, Mario Liu, Harald Pleiner, Helmut R. Brand, Phys. Rev. E 93, 023113 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    Oliver Müller, Mario Liu, Harald Pleiner, Helmut R. Brand, Phys. Rev. E 93, 023114 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    B.O. Hardin, F.E. Richart, J. Soil Mech. Found. Div. ASCE 89, SM1:33 (1963)Google Scholar
  57. 57.
    Stefan Luding, Nonlinearity 22, 101 (2009)MathSciNetCrossRefGoogle Scholar
  58. 58.
    L. Bocquet, W. Losert, D. Schalk, T.C. Lubensky, J.P. Gollub, Phys. Rev. E 65, 011307 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    C. Josserand, A.V. Tkachenko, D.M. Mueth, H.M. Jaeger, Phys. Rev. Lett. 85, 3632 (2000)ADSCrossRefGoogle Scholar
  60. 60.
    J.A. Dijksman, G.H. Wortel, L.T.H. van Dellen, O. Dauchot, M. van Hecke, Phys. Rev. Lett. 107, 108303 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    S. Luding, M. Nicolas, O. Pouliquen, in Compaction of Soils, Granulates and Powders, edited by D. Kolymbas, W. Fellin (Balkema, Rotterdam, 2000)Google Scholar
  62. 62.
    Andrzej Niemunis, Carlos E. Grandas Tavera, Torsten Wichtmann, in Holistic Simulation of Geotechnical Installation Processes, edited by T. Triantafyllidis, Lect. Notes Appl. Computat. Mech. Vol. 80 (Springer, 2016)Google Scholar
  63. 63.
    Jiang, Liu, Acta Geotech. 11, 519 (2016)CrossRefGoogle Scholar
  64. 64.
    I.S. Aranson, L.S. Tsimring, Phys. Rev. E 65, 061303 (2002)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    Wei Wu, J. Engin. Math. 56, 23 (2006)CrossRefGoogle Scholar
  67. 67.
    J. Tejchman, W. Wu, Granular Matter 12, 399 (2010)CrossRefGoogle Scholar
  68. 68.
    R.A. Bagnold, Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 225, 49 (1954)ADSCrossRefGoogle Scholar
  69. 69.
    P. Wroth, A. Schofield, Critical State Soil Mechanics (McGraw-Hill, London, 1968). Google Scholar
  70. 70.
    D.M. Wood, Soil Behaviour and Critical State Soil Mechanics (Cambridge University Press, 1990)Google Scholar
  71. 71.
    S. Roy, S. Luding, T. Weinhart, submitted to New J. Phys. (2016)Google Scholar
  72. 72.
    C.S. Campbell, J. Fluid Mech. 465, 261 (2002)ADSCrossRefGoogle Scholar
  73. 73.
    A. Singh, K. Saitoh, V. Magnanimo, S. Luding, New J. Phys. 17, 043028 (2015)ADSCrossRefGoogle Scholar
  74. 74.
    T.S. Komatsu, S. Inagaki, N. Nakagawa, S. Nasuno, Phys. Rev. Lett. 86, 1757 (2001)ADSCrossRefGoogle Scholar
  75. 75.
    J. Crassous, J.-F. Metayer, P. Richard, C. Laroche, J. Stat. Mech. 2008, P03009 (2008)CrossRefGoogle Scholar
  76. 76.
    D. Fenistein, J.W. van de Meent, M. van Hecke, Nature 425, 695 (2003)CrossRefGoogle Scholar
  77. 77.
    D. Fenistein, J.W. van de Meent, M. van Hecke, Phys. Rev. Lett. 96, 118001 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    D. Fenistein, J.W. van de Meent, M. van Hecke, Phys. Rev. Lett. 96, 038001 (2006)CrossRefGoogle Scholar
  79. 79.
    Ken Kamrin, Eran Bouchbinder, J. Mech. Phys. Solids 73, 269 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Central South UniversityChangshaChina
  2. 2.Theoretische PhysikUniversität TübingenTübingenGermany

Personalised recommendations