Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder

Regular Article


This article provides a comprehensive analysis of the energy transportation by virtue of the melting process of high-temperature phase change materials. We have developed a two-dimensional model for the boundary layer flow of non-Newtonian Carreau fluid. It is assumed that flow is caused by stretching of a cylinder in the axial direction by means of a linear velocity. Adequate local similarity transformations are employed to determine a set of non-linear ordinary differential equations which govern the flow problem. Numerical solutions to the resultant non-dimensional boundary value problem are computed via the fifth-order Runge-Kutta Fehlberg integration scheme. The solutions are captured for both zero and non-zero curvature parameters, i.e., for flow over a flat plate or flow over a cylinder. The flow and heat transfer attributes are witnessed to be prompted in an intricate manner by the melting parameter, the curvature parameter, the Weissenberg number, the power law index and the Prandtl number. We determined that one of the possible ways to boost the fluid velocity is to increase the melting parameter. Additionally, both the velocity of the fluid and the momentum boundary layer thickness are higher in the case of flow over a stretching cylinder. As expected, the magnitude of the skin friction and the rate of heat transfer decrease by raising the values of the melting parameter and the Weissenberg number.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 


  1. 1.
    L. Roberts, J. Fluid Mech. 4, 505 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    M. Epstein, D.H. Cho, J. Heat transfer 98, 531 (1976)CrossRefGoogle Scholar
  3. 3.
    C. Tien, Y.C. Yen, J. Appl. Meteorol. 4, 523 (1965)ADSCrossRefGoogle Scholar
  4. 4.
    A.Y. Bakier, Transport Porous Media 29, 127 (1997)CrossRefGoogle Scholar
  5. 5.
    R.S.R. Gorla, M.A. Mansour, I.A. Hassanien, A.Y. Bakier, Transport Porous Media 36, 245 (1999)CrossRefGoogle Scholar
  6. 6.
    W.T. Cheng, C.H. Lin, Int. J. Heat Mass Transfer 50, 3026 (2007)CrossRefGoogle Scholar
  7. 7.
    N. Bachok, A. Ishak, I. Pop, Phys. Lett. A 374, 4075 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    T. Hayat, A. Shafiq, A. Alsaedi, J. Magn. & Magn. Mater. 405, 97 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    T. Hayat, Z. Hussain, M. Farooq, A. Alsaedi, J. Mol. Liq. 215, 749 (2016)CrossRefGoogle Scholar
  10. 10.
    T. Hayat, Z. Hussain, A. Alsaedi, B. Ahmad, J. Mol. Liq. 220, 200 (2016)CrossRefGoogle Scholar
  11. 11.
    T. Hayat, K. Muhammad, M. Farooq, A. Alsaedi, AIP Adv. 6, 015214 (2016) DOI:10.1063/1.4940932 ADSCrossRefGoogle Scholar
  12. 12.
    C.Y. Wang, Phys. Fluids 31, 466 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    C.Y. Wang, Commun. Non-linear Sci. Numer. Simul. 17, 1098 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    A. Ishak, R. Nazar, Eur. J. Sci. Res. 36, 22 (2009)Google Scholar
  15. 15.
    S. Mukhopadhyay, Ain Shams Eng. J. 4, 317 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Khan, R. Malik, AIP Adv. 5, 127202 (2015) DOI:10.1063/1.4937346 ADSCrossRefGoogle Scholar
  17. 17.
    P.J. Carreau, Trans. Soc. Rheol. 116, 99 (1972)CrossRefGoogle Scholar
  18. 18.
    R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987)Google Scholar
  19. 19.
    H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, New York, 1989)Google Scholar
  20. 20.
    J.N. Shadid, E.R.G. Eckert, Int. J. Heat Mass Transfer 35, 39 (1992)CrossRefGoogle Scholar
  21. 21.
    K. Khellaf, G. Lauriat, J. Non-Newton. Fluid Mech. 89, 45 (2000)CrossRefGoogle Scholar
  22. 22.
    R.R. Martins, F.S. Silveira, M.L. Martins-Costa, S. Frey, Lat. Am. Appl. Res. 38, 321 (2008)Google Scholar
  23. 23.
    N.S. Akbar, S. Nadeem, Ain Shams Eng. J. 5, 1307 (2014)CrossRefGoogle Scholar
  24. 24.
    N.S. Akbar, S. Nadeem, Z.H. Khan, Alex. Eng. J. 53, 191 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Uddin, J.O. Marston, S.T. Thoroddsen, Phys. Fluids 24, 073104 (2012) DOI:10.1063/1.4736742 ADSCrossRefGoogle Scholar
  26. 26.
    M. Khan, Hashim, AIP Adv. 5, 107203 (2015) DOI:10.1063/1.4932627 ADSCrossRefGoogle Scholar
  27. 27.
    R.R. Rangi, N. Ahmad, Appl. Math. 3, 205 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    V. Poply, P. Sing, K.K. Chaudhary, WSEAS Trans. Fluid Mech. 8, 159 (2013)Google Scholar
  29. 29.
    A. Pantokratoras, Appl. Math. Modell. 33, 413 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Mathematics, Faculty of ScienceKing Abdul-Aziz UniversityJeddahSaudi Arabia

Personalised recommendations