Phase behaviour in complementary DNA-coated gold nanoparticles and fd-viruses mixtures: a numerical study

  • Massimiliano Chiappini
  • Erika Eiser
  • Francesco Sciortino
Regular Article

Abstract.

A new gel-forming colloidal system based on a binary mixture of fd-viruses and gold nanoparticles functionalized with complementary DNA single strands has been recently introduced. Upon quenching below the DNA melt temperature, such a system results in a highly porous gel state, that may be developed in a new functional material of tunable porosity. In order to shed light on the gelation mechanism, we introduce a model closely mimicking the experimental one and we explore via Monte Carlo simulations its equilibrium phase diagram. Specifically, we model the system as a binary mixture of hard rods and hard spheres mutually interacting via a short-range square-well attractive potential. In the experimental conditions, we find evidence of a phase separation occurring either via nucleation-and-growth or via spinodal decomposition. The spinodal decomposition leads to the formation of small clusters of bonded rods and spheres whose further diffusion and aggregation leads to the formation of a percolating network in the system. Our results are consistent with the hypothesis that the mixture of DNA-coated fd-viruses and gold nanoparticles undergoes a non-equilibrium gelation via an arrested spinodal decomposition mechanism.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

Supplementary material

10189_2017_365_MOESM1_ESM.mp4 (14.9 mb)
Supplementary material
10189_2017_365_MOESM2_ESM.mp4 (14.9 mb)
Supplementary material
10189_2017_365_MOESM3_ESM.pdf (37 kb)
Supplementary material

References

  1. 1.
    L. Onsagher, Ann. N.Y. Acad. Sci. 51, 627 (1949)ADSCrossRefGoogle Scholar
  2. 2.
    S. Fraden, G. Maret, D.L.D. Caspar, R.B. Meyer, Phys. Rev. Lett. 63, 2068 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    S. Fraden, G. Maret, D.L.D. Caspar, Phys. Rev. E 48, 2816 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    R. Oldenbourg, X. Wen, R.B. Meyer, D.L.D. Caspar, Phys. Rev. Lett. 61, 1851 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Dogic, S. Fraden, Curr. Opin. Colloid Interface Sci. 11, 47 (2006)CrossRefGoogle Scholar
  6. 6.
    Z. Dogic, K.R. Purdy, E. Grelet, M. Adams, S. Fraden, Phys. Rev. E 69, 051702 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    P.A. Buining, A.P. Philipse, H.N.W. Lekkerkerker, Langmuir 10, 2106 (1994)CrossRefGoogle Scholar
  8. 8.
    H. Maeda, Y. Maeda, Phys. Rev. Lett. 90, 018303 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A. Kuijk, D. Byelov, A.V. Petukhov, A. van Blaaderen, A. Imhof, Faraday Discuss. 159, 181 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Z.X. Zhang, J.S. van Duijneveldt, J. Chem. Phys. 124, 154910 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J. Peng, A. Kroes-Nijboer, P. Venema, E. van del Linden, Soft Matter 12, 3514 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    M. Adams, Z. Dogic, S.L. Keller, S. Fraden, Nature 393, 349 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    N. Yasarawan, J.S. van Duijneveldt, Soft Matter 6, 353 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382, 607 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P.J. Bruchez, P.G. Schultz, Nature 382, 609 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    N. Geerts, E. Eiser, Soft Matter 6, 4647 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R.R. Unwin, R.A. Cabanas, T. Yanagishima, T.R. Blower, H. Takahashi, G.P.C. Salmond, J.M. Edwardson, S. Fraden, E. Eiser, Phys. Chem. Chem. Phys. 17, 8194 (2015)CrossRefGoogle Scholar
  18. 18.
    Z. Ruff, S.H. Nathan, R.R. Unwin, M. Zupkauskas, D. Joshi, G.P.C. Salmond, C.P. Grey, E. Eiser, Faraday Discuss. 186, 473 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    E. Zaccarelli, J. Phys.: Condens. Matter 19, 323101 (2007)Google Scholar
  20. 20.
    P.J. Lu, E. Zaccarelli, F. Ciulla, A.B. Schofield, F. Sciortino, D.A. Weitz, Nature 453, 499 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    E.H.A. de Hoog, W.K. Kegel, A. van Blaaderen, H.N.W. Lekkerkerker, Phys. Rev. E 64, 021407 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    F. Cardinaux, T. Gibaud, A. Stradner, P. Schurtenberger, Phys. Rev. Lett. 99, 118301 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    S. Buzzaccaro, R. Rusconi, R. Piazza, Phys. Rev. Lett. 99, 098301 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    F. Sciortino, R. Bansil, H.E. Stanley, P. Alstrom, Phys. Rev. E 47, 4615 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 74, 282 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    M. Carpineti, M. Giglio, Phys. Rev. Lett. 68, 3327 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    E. Barry, D. Beller, Z. Dogic, Soft Matter 5, 2563 (2009)Google Scholar
  29. 29.
    M.C. Duro, J.A. Martn-Pereda, L.M. Ses, Phys. Rev. A 37, 284 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    R. Blaak, D. Frenkel, B.M. Mulder, J. Chem. Phys. 110, 11652 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    D. Frenkel, H.N.W. Lekkerkerker, A. Stroobants, Nature 332, 822 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    J.A.C. Veerman, D. Frenkel, Phys. Rev. A 41, 3237 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    M. Dijkstra, R. van Roij, R. Evans, Phys. Rev. E 63, 051703 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Computational Science Series, Vol. 1 (Academic Press, 2002)Google Scholar
  35. 35.
    E. Sanz, D. Marenduzzo, J. Chem. Phys. 132, 194102 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    F. Romano, C.D. Michele, D. Marenduzzo, E. Sanz, J. Chem. Phys. 135, 124106 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    A. Patti, A. Cuetos, Phys. Rev. E 86, 011403 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    A. Cuetos, A. Patti, Phys. Rev. E 92, 022302 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    M. Rottereau, J.C. Gimel, T. Nicolai, D. Durand, Eur. Phys. J. E 15, 133 (2004)CrossRefGoogle Scholar
  40. 40.
    S. Babu, J.C. Gimel, T. Nicolai, J. Chem. Phys. 125, 184512 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    A.Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987)ADSCrossRefGoogle Scholar
  42. 42.
    A.Z. Panagiotopoulos, N. Quirke, M. Stapleton, D.J. Tildesley, Mol. Phys. 63, 527 (1988)ADSCrossRefGoogle Scholar
  43. 43.
    A.J.C. Ladd, L.V. Woodcock, Chem. Phys. Lett. 51, 155 (1977)ADSCrossRefGoogle Scholar
  44. 44.
    A.J.C. Ladd, L.V. Woodcock, Mol. Phys. 36, 611 (1978)ADSCrossRefGoogle Scholar
  45. 45.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edition (Academic Press, 2006)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Massimiliano Chiappini
    • 1
  • Erika Eiser
    • 2
  • Francesco Sciortino
    • 1
  1. 1.Physics DepartmentUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations