Non-equilibrium molecular dynamics simulations of the transient Ludwig-Soret effect in a binary Lennard-Jones/spline mixture

Regular Article
Part of the following topical collections:
  1. Non-isothermal transport in complex fluids


A binary isotope mixture of Lennard-Jones/spline particles at equilibrium was perturbed by a sudden change in the system's boundary temperatures. The system's response was determined by non-equilibrium molecular dynamics (NEMD). Three transient processes were studied: 1) The propagation of a pressure (shock) wave, 2) heat diffusivity and conduction, and 3) thermal diffusion (the Ludwig-Soret effect). These three processes occur at different time scales, which makes it possible to separate them in one single NEMD run. The system was studied in liquid, supercritical, and dense gas states with various forms and strengths of the thermal perturbation. The results show that heat was initially transported by two separate mechanisms: 1) heat diffusion as described by the transient heat equation and 2) as a consequence of a pressure wave. The pressure wave travelled faster than the speed of sound, generating a shock wave in the system. Local equilibrium was found in the transient phase, even with very strong perturbations and in the shock front. Although the mass separation due to the Ludwig-Soret effect developed much slower than the pressure and temperature fields in the system at large, it was found that the Soret coefficient could be accurately determined from the initial phase of the transient and close to the heat source. This opens the possibility of a new way to analyse results from transient experiments and thereby minimize effects of gravity and convection due to buoyancy.

Graphical abstract


Topical Issue: Non-isothermal transport in complex fluids 


  1. 1.
    C. Ludwig, Sitz. Ber. Akad. Wiss. Wien Math-Naturw. Kl. 20, 539 (1856)Google Scholar
  2. 2.
    Ch. Soret, Arch. Sci. Phys. Nat. 2, 48 (1879)Google Scholar
  3. 3.
    S. deGroot, P. Mazur, Non-equilibrium Thermodynamics (Dover, 1984)Google Scholar
  4. 4.
    S. Kjelstrup, D. Bedeaux, E. Johannesen, J. Gross, Non-Equilibrium Thermodynamics for Engingeers (World Scientific, New Jersey, 2010)Google Scholar
  5. 5.
    M.M. Bou-Ali et al., Eur. Phys. J. E 38, 30 (2015)CrossRefGoogle Scholar
  6. 6.
    P.-A. Artola, B. Rousseau, Mol. Phys. 111, 3394 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    A. Firoozabadi, K. Ghoryaeb, K. Shukla, AIChE J. 46, 892 (2000)CrossRefGoogle Scholar
  8. 8.
    P. Bordat, D. Reith, F. Müller-Plathe, J. Chem. Phys. 115, 8978 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    G. Galliero et al., Fluid Phase Equilib. 208, 171 (2003)CrossRefGoogle Scholar
  10. 10.
    W. Köhler, K.I. Morozow, J. Non-equilib. Thermodyn. 41, 151 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    S. Srinivasan, M.Z. Saghir, Int. J. Therm. Sci. 50, 1125 (2011)CrossRefGoogle Scholar
  12. 12.
    J.K. Platten, J. Appl. Mech. 73, 5 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    S. Wiegand, J. Phys.: Condens. Matter 16, R357 (2004)ADSGoogle Scholar
  14. 14.
    S.A. Putnam, D.G. Cahill, Rev. Sci. Instrum. 75, 2368 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    D.W. Pohl, P. Schwarz, V. Irniger, Phys. Rev. Lett. 31, 32 (1973)ADSCrossRefGoogle Scholar
  16. 16.
    K. Thyagarajan, P. Lallemand, Opt. Commun. 26, 54 (1978)ADSCrossRefGoogle Scholar
  17. 17.
    A. Mialdun, V. Shevtsova, J. Chem. Phys. 134, 044524 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    D. MacGowan, D.J. Evans, Phys. Rev. A 34, 2133 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    G.V. Paolini, G. Ciccotti, Phys. Rev. A 35, 5156 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    W.T. Ashurst, W.G. Hoover, Phys. Rev. A 11, 658 (1975)ADSCrossRefGoogle Scholar
  21. 21.
    T. Ikeshoji, B. Hafskjold, Mol. Phys. 81, 251 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    B. Hafskjold, T. Ikeshoji, S.K. Ratkje, Mol. Phys. 80, 1389 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    F. Bresme, A. Lervik, J. Armstraong, Non-equilibrium Molecular Dynamics, in Experimental Thermodynamics, Volume X, Non-equilibrium Thermodynamics with Applications, edited by D. Bedeaux, S. Kjelstrup, J.V. Sengers (The Royal Society of Chemistry, Cambridge, 2016)Google Scholar
  24. 24.
    F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    D. Reith, F. Müller-Plathe, J. Chem. Phys. 112, 2436 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    P. Wirnsberger et al., J. Chem. Phys. 143, 124104 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    M. Ferrario, S. Bonella, G. Ciccotti, Eur. Phys. J. ST 225, 1629 (2016)CrossRefGoogle Scholar
  28. 28.
    B.L. Holian, D.J. Evans, J. Chem. Phys. 78, 5147 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    B. Hafskjold, S.K. Ratkje, J. Stat. Phys. 78, 463 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    G. Ciccotti, G. Jacucci, Phys. Rev. Lett. 35, 789 (1975)ADSCrossRefGoogle Scholar
  31. 31.
    S. Van Vaerenbergh, J.C. Legros, Phys. Rev. A 41, 6727 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    P. Costesèque, T. Pollak, J.K. Platten, M. Marcoux, Eur. Phys. J. E 15, 249 (2004)CrossRefGoogle Scholar
  33. 33.
    K.B. Haugen, A. Firoozabadi, J. Chem. Phys. 127, 154507 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Q. Galand, S. Van Vaerenbergh, Eur. Phys. J. E 38, 26 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of ChemistryNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations