Microgravity in a thin film: How confinement kills gravity

Regular Article
Part of the following topical collections:
  1. Non-isothermal transport in complex fluids

Abstract.

Fluctuations in the presence of concentration gradients are long-ranged and decay diffusively for small spatial scales. At larger scales fluctuations are influenced by gravity and confinement. The confinement in the direction of the concentration gradient couples to gravity generating a slowing down that ends up in a diffusion-like behavior of fluctuations of size comparable to the vertical extension of the sample. The resulting enhanced diffusion coefficient depends on the solutal Rayleigh number of the system. For small (in modulus) values of the solutal Rayleigh number the apparent diffusion coefficient tends towards the normal one and a simple diffusive behavior is obtained. This is quite similar to what happens in microgravity conditions when the solutal Rayleigh number is drastically reduced because of the reduction of g by about 6 orders of magnitude. Experiments are shown for positive and negative solutal Rayleigh numbers smaller (in modulus) than 1000. The effect of the confinement on the statics is also investigated. Comparison with microgravity data obtained through the GRADFLEX project is performed.

Graphical abstract

Keywords

Topical Issue: Non-isothermal transport in complex fluids 

References

  1. 1.
    A. Ryskin, H.W. Müller, H. Pleiner, Phys. Rev. E 67, 046302 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006)Google Scholar
  3. 3.
    F. Croccolo, J.M. Ortiz de Zárate, J.V. Sengers, Eur. Phys. J. E. 39, 125 (2016)CrossRefGoogle Scholar
  4. 4.
    D. Brogioli, F. Croccolo, A. Vailati, Phys. Rev. E 94, 022142 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    P. Baaske, H. Bataller, M. Braibanti, M. Carpineti, R. Cerbino, F. Croccolo, A. Donev, W. Köhler, J.M. Ortiz de Zárate, A. Vailati, Eur. Phys. J. E 39, 119 (2016)Google Scholar
  6. 6.
    C. Giraudet, H. Bataller, Y. Sun, A. Donev, J.M. Ortiz de Zárate, F. Croccolo, Europhys. Lett. 111, 60013 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    C. Giraudet, H. Bataller, Y. Sun, A. Donev, J.M. Ortiz de Zárate, F. Croccolo, Eur. Phys. J. E 39, 120 (2016)Google Scholar
  8. 8.
    F. Croccolo, H. Bataller, F. Scheffold, J. Chem. Phys. 137, 234202 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    F. Croccolo, F. Scheffold, H. Bataller, C. R. Méc. 341, 378 (2013)CrossRefGoogle Scholar
  10. 10.
    F. Croccolo, F. Scheffold, A. Vailati, Phys. Rev. Lett. 111, 014502 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    G.S. Settles, Schlieren and Shadowgraph Techniques (Springer, Berlin, 2001)Google Scholar
  12. 12.
    S. Trainoff, D.S. Cannell, Phys. Fluids 14, 1340 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    F. Croccolo, D. Brogioli, Appl. Opt. 50, 3419 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Appl. Opt. 45, 2166 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Ann. N.Y. Acad. Sci. 1077, 365 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Phys. Rev. E 76, 041112 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    R. Cerbino, V. Trappe, Phys. Rev. Lett. 100, 188102 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    G. Cerchiari, F. Croccolo, F. Cardinaux, F. Scheffold, Rev. Sci. Instrum. 83, 106101 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    P.N. Segrè, R. Schmitz, J.V. Sengers, Physica A 195, 31 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    P.N. Segrè, J.V. Sengers, Physica A 198, 46 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    F. Croccolo, H. Bataller, F. Scheffold, Eur. Phys. J. E 37, 105 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Giraudet, H. Bataller, F. Croccolo, Eur. Phys. J. E 37, 107 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Vailati, M. Giglio, Nature 390, 262 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    A. Vailati, M. Giglio, Phys. Rev. E 58, 4361 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    J.M. Ortiz de Zárate, T.R. Kirkpatrick, J.V. Sengers, Eur. Phys. J. E 38, 99 (2015)CrossRefGoogle Scholar
  26. 26.
    J.M. Ortiz de Zárate, F. Peluso, J.V. Sengers, Eur. Phys. J. E 15, 319 (2004)CrossRefGoogle Scholar
  27. 27.
    F. Giavazzi, A. Vailati, Phys. Rev. E 80, 015303(R) (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A. Vailati, R. Cerbino, S. Mazzoni, C.J. Takacs, D.S. Cannell, M. Giglio, Nat. Commun. 2, 290 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    C.J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, D.S. Cannell, Phys. Rev. Lett. 106, 244502 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    R. Cerbino, Y. Sun, A. Donev, A. Vailati, Sci. Rep. 5, 14486 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    F. Croccolo, C. Giraudet, H. Bataller, R. Cerbino, A. Vailati, Micrograv. Sci. Technol. 28, 467 (2016)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire des Fluides Complexes et leurs Réservoirs - UMR5150Université de Pau et des Pays de l’AdourAngletFrance
  2. 2.Centre National d’Études Spatiales (CNES) 2ParisFrance

Personalised recommendations