Influence of temperature and charge effects on thermophoresis of polystyrene beads

  • Olga Syshchyk
  • Dzmitry Afanasenkau
  • Zilin Wang
  • Hartmut Kriegs
  • Johan Buitenhuis
  • Simone Wiegand
Regular Article
Part of the following topical collections:
  1. Non-isothermal transport in complex fluids

Abstract.

We study the thermodiffusion behavior of spherical polystyrene beads with a diameter of 25 nm by infrared thermal diffusion Forced Rayleigh Scattering (IR-TDFRS). Similar beads were used to investigate the radial dependence of the Soret coefficient by different authors. While Duhr and Braun (Proc. Natl. Acad. Sci. U.S.A. 104, 9346 (2007)) observed a quadratic radial dependence Braibanti et al. (Phys. Rev. Lett. 100, 108303 (2008)) found a linear radial dependence of the Soret coefficient. We demonstrated that special care needs to be taken to obtain reliable thermophoretic data, because the measurements are very sensitive to surface properties. The colloidal particles were characterized by transmission electron microscopy and dynamic light scattering (DLS) experiments were performed. We carried out systematic thermophoretic measurements as a function of temperature, buffer and surfactant concentration. The temperature dependence was analyzed using an empirical formula. To describe the Debye length dependence we used a theoretical model by Dhont. The resulting surface charge density is in agreement with previous literature results. Finally, we analyze the dependence of the Soret coefficient on the concentration of the anionic surfactant sodium dodecyl sulfate (SDS), applying an empirical thermodynamic approach accounting for chemical contributions.

Graphical abstract

Keywords

Topical Issue: Non-isothermal transport in complex fluids 

References

  1. 1.
    S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984)Google Scholar
  2. 2.
    S. Wiegand, J. Phys.: Condens. Matter 16, R357 (2004)ADSGoogle Scholar
  3. 3.
    R. Piazza, A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008)ADSGoogle Scholar
  4. 4.
    A. Würger, Rep. Prog. Phys. 73, 126601 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    W. Köhler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    C. Ludwig, Sitz. Ber. Math.-Naturw. Clas. Kais. Akad. Wiss. 20, 539 (1856)Google Scholar
  7. 7.
    C. Soret, Arch. Geneve 3, 48 (1879)Google Scholar
  8. 8.
    K. Clusius, G. Dickel, Naturwiss. 27, 148 (1939)ADSGoogle Scholar
  9. 9.
    H. Cölfen, M. Antonietti, Field-Flow Fractionation Techniques for Polymer and Colloid Analysis, Vol. 150 of Advances in Polymer Science (Springer-Verlag Berlin Heidelberg, 2000) pp. 67--187Google Scholar
  10. 10.
    M. Jerabek-Willemsen, T. André, W. Wanner, H.M. Roth, S. Duhr, P. Baaske, D. Breitsprecher, J. Mol. Struct. 1077, 101 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E 19, 59 (2006)CrossRefGoogle Scholar
  12. 12.
    P. Kolodner, H. Williams, C. Moe, J. Chem. Phys. 88, 6512 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    P. Polyakov, S. Wiegand, J. Chem. Phys. 128, 034505 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    K. Maeda, N. Shinyashiki, S. Yagihara, S. Wiegand, R. Kita, J. Chem. Phys. 143, 124504 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Doreen Niether, Dzmitry Afanasenkau, Jan K.G. Dhont, Simone Wiegand, Proc. Natl. Acad. Sci. U.S.A. 113, 4272 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    H. Ning, J.K.G. Dhont, S. Wiegand, Langmuir 24, 2426 (2008)CrossRefGoogle Scholar
  17. 17.
    Z. Wang, H. Kriegs, J. Buitenhuis, J.K.G. Dhont, S. Wiegand, Soft Matter 9, 8697 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    A.L. Sehnem, R. Aquino, A.F.C. Campos, F.A. Tourinho, J. Depeyrot, A.M.F. Neto, Phys. Rev. E 89, 032308 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A.L. Sehnem, A.M.F. Neto, R. Aquino, A.F.C. Campos, F.A. Tourinho, J. Depeyrot, Phys. Rev. E 92, 042311 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    J.K.G. Dhont, W.J. Briels, Eur. Phys. J. E 25, 61 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Würger, Phys. Rev. Lett. 101, 108302 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    A. Majee, A. Würger, Phys. Rev. E 83, 061403 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    P. Blanco, H. Kriegs, M.P. Lettinga, P. Holmqvist, S. Wiegand, Biomacromolecules 12, 1602 (2011)CrossRefGoogle Scholar
  24. 24.
    J.K.G. Dhont, S. Wiegand, S. Duhr, D. Braun, Langmuir 23, 1674 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Wiegand, Introduction to Thermal Gradient Related Effects (Forschungszentrum Jülich, Jülich, 2015) pp. F4.1--F4.24Google Scholar
  26. 26.
    S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 103, 19678 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    M. Braibanti, D. Vigolo, R. Piazza, Phys. Rev. Lett. 100, 108303 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    S.A. Putnam, D.G. Cahill, G.C.L. Wong, Langmuir 23, 9221 (2007)CrossRefGoogle Scholar
  29. 29.
    Y.G. Zhao, C.L. Zhao, J.H. He, Y. Zhou, C. Yang, Soft Matter 9, 7726 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    S. Duhr, D. Braun, Phys. Rev. Lett. 96, 168301 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    B. Richards, private communication, technical support of Thermo Fisher Scientific (2014)Google Scholar
  32. 32.
    P.H. Elworthy, K.J. Mysels, J. Colloid Interface Sci. 21, 331 (1966)CrossRefGoogle Scholar
  33. 33.
    S. Wiegand, H. Ning, H. Kriegs, J. Phys. Chem. B 111, 14169 (2007)CrossRefGoogle Scholar
  34. 34.
    M.G. McPhie, G. Nägele, J. Chem. Phys. 127, 034906 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    G. Nägele, The Physics of Colloidal Soft Matter, Vol. 14 (Institute of Fundamental Technological Research, Polish academy of Science, Warsaw, 2004). Google Scholar
  36. 36.
    J. Gapinski, A. Wilk, A. Patkowski, W. Häussler, A.J. Banchio, R. Pecora, G. Nägele, J. Chem. Phys. 123, 054708 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    M.P. Lettinga, J.K.G. Dhont, Z. Zhang, S. Messlinger, G. Gompper, Soft Matter 6, 4556 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    S. Wiegand, W. Köhler, Determination of Molecular Weights and Their Distributions, Vol. 53 (Elsevier, Amsterdam, 2008) Chapt. 6, pp. 205--251Google Scholar
  39. 39.
    A.F. Barbero, R.M. Garcia, M.A.C. Vilchez, R. Hidalgoalvarez, Colloids Surf., A 92, 121 (1994)CrossRefGoogle Scholar
  40. 40.
    S.H. Behrens, D.G. Grier, J. Chem. Phys. 115, 6716 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    R. Sugaya, B.A. Wolf, R. Kita, Biomacromolecules 7, 435 (2006)CrossRefGoogle Scholar
  42. 42.
    S.J. Jeon, M.E. Schimpf, A. Nyborg, Anal. Chem. 69, 3442 (1997)CrossRefGoogle Scholar
  43. 43.
    D. Vigolo, S. Buzzaccaro, R. Piazza, Langmuir 26, 7792 (2010)CrossRefGoogle Scholar
  44. 44.
    H.B. de Aguiar, M.L. Strader, A.G.F. de Beer, S. Roke, J. Phys. Chem. B 115, 2970 (2011)CrossRefGoogle Scholar
  45. 45.
    H. Durchschlag, P. Zipper, Ultracentrifugation 94, 20 (1994)CrossRefGoogle Scholar
  46. 46.
    T.J. Bruno, P.D.N. Svoronos, Surface active chemicals (surfactants), in CRC Handbook of Chemistry and Physics (CRC Press/Taylor & Francis) Internet version 2017Google Scholar
  47. 47.
    K.G. Denbigh, The Thermodynamics of the Steady State, Methuen's Monographs on Chemical Subjects (Methuen, London, 1951)Google Scholar
  48. 48.
    M.G. Gonzalez-Bagnoli, A.A. Shapiro, E.H. Stenby, Philos. Mag. 83, 2171 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    S. Hartmann, G. Wittko, W. Köhler, K.I. Morozov, K. Albers, G. Sadowski, Phys. Rev. Lett. 109, 065901 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    J.K. Platten, M.M. Bou-Ali, P. Costeseque, J.F. Dutrieux, W. Köhler, C. Leppla, S. Wiegand, G. Wittko, Philos. Mag. 83, 1965 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Olga Syshchyk
    • 1
    • 2
  • Dzmitry Afanasenkau
    • 1
  • Zilin Wang
    • 1
  • Hartmut Kriegs
    • 1
  • Johan Buitenhuis
    • 1
  • Simone Wiegand
    • 1
    • 3
  1. 1.ICS-3, Soft Condensed MatterForschungszentrum Juelich GmbHJuelichGermany
  2. 2.Institute of High TechnologiesTaras Shevchenko National University of KyivKyivUkraine
  3. 3.Chemistry Department - Physical ChemistryUniversity CologneCologneGermany

Personalised recommendations