Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Octupolar order in three dimensions

  • 93 Accesses

  • 12 Citations

Abstract.

Octupolar order in three space dimensions is described by a real-valued, fully symmetric and traceless, third-rank tensor A. The real generalized eigenvalues of A are also the critical values of a real-valued potential \(\Phi\) defined on the unit sphere \(\mathbb{S}^{2}\) by A. Generalized eigenvalues of A and critical points of \(\Phi\) are equivalent means to describe octupolar order in a molecular assembly according to Buckingham's formula for the probability density distribution. Intuition suggests that \(\Phi\) would generically have four maxima, corresponding to the most probable molecular orientations, so that a (possibly distorted) tetrahedron would effectively describe A. This paper shows that another generic octupolar state flanks the expected one, featuring three maxima of \(\Phi\). The two generic states are divided by a separatrix manifold, which may physically represent an intra-octupolar transition.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    L.G. Fel, Phys. Rev. E 52, 702 (1995)

  2. 2

    L.G. Fel, Phys. Rev. E 52, 2692 (1995)

  3. 3

    T.C. Lubensky, L. Radzihovsky, Phys. Rev. E 66, 031704 (2002)

  4. 4

    H.R. Brand, H. Pleiner, P. Cladis, Eur. Phys. J. E 7, 163 (2002)

  5. 5

    T. Niori, T. Sekine, J. Watanabe, T. Furukawa, H. Takezoe, J. Mater. Chem. 6, 1231 (1996)

  6. 6

    D.R. Link, G. Natale, R. Shao, J.E. Maclennan, N.A. Clark, E. Körblova, D.M. Walba, Science 278, 1924 (1997)

  7. 7

    H. Pleiner, H.R. Brand, Eur. Phys. J. E 37, 11 (2014)

  8. 8

    E.G. Virga, Eur. Phys. J. E 38, 1 (2015)

  9. 9

    A.D. Buckingham, Discuss. Faraday Soc. 43, 205 (1967)

  10. 10

    C. Zannoni, in The Molecular Physics of Liquid Crystals, edited by G. Luckhurst, G. Gray (Academic Press, 1979) pp. 51--83

  11. 11

    L. Qi, J. Symbolic Comput. 40, 1302 (2005)

  12. 12

    L. Qi, J. Math. Anal. Appl. 325, 1363 (2007)

  13. 13

    G. Ni, L. Qi, F. Wang, Y. Wang, J. Math. Anal. Appl. 329, 1218 (2007)

  14. 14

    D. Cartwright, B. Sturmfels, Linear Algebra Appl. 438, 942 (2013)

  15. 15

    X. Zheng, P. Palffy-Muhoray, electronic-Liquid Crystal Communications (2007), http://www.e-lc.org/docs/2007_02_03_02_33_15

  16. 16

    S. Romano, Phys. Rev. E 74, 011704 (2006)

  17. 17

    S. Romano, Phys. Rev. E 77, 021704 (2008)

  18. 18

    J.J. Stoker, Differential Geometry (Wiley-Interscience, New York, 1969)

  19. 19

    J.C. Maxwell, Philos. Mag. 2, 233 (1870)

  20. 20

    A. Cayley, Philos. Mag. 18, 264 (1859)

  21. 21

    D. Hilbert, S. Cohn-Vossen, Geometry and the Imagination, 2nd edn. (AMS Chelsea Publishing, Providence, 1999)

  22. 22

    S.S. Turzi, J. Math. Phys. 52, 053517 (2011)

  23. 23

    L. Qi, J. Math. Anal. Appl. 325, 1363 (2007)

  24. 24

    F.W. Byron, jr., R.W. Fuller, Mathematics of Classical and Quantum Physics (Dover, Mineola, N.Y., 1992), unabridged, corrected republication of the work first published in two volumes by Addison-Wesley, 1969 (Vol. 1) and 1970 (Vol. 2)

Download references

Author information

Correspondence to Epifanio G. Virga.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaeta, G., Virga, E.G. Octupolar order in three dimensions. Eur. Phys. J. E 39, 113 (2016). https://doi.org/10.1140/epje/i2016-16113-7

Download citation

Keywords

  • Soft Matter: Liquid crystals