Development of a high-pressure set-up for measurements of binary diffusion coefficients in supercritical carbon dioxide

  • S. Ancherbak
  • C. Santos
  • J. -C. Legros
  • A. Mialdun
  • V. Shevtsova
Regular Article
Part of the following topical collections:
  1. Non-isothermal transport in complex fluids

Abstract.

We present the development of a high-pressure apparatus for measurements of diffusion coefficients in supercritical fluids. The Taylor dispersion method has been adapted to conduct experiments at the pressures up to 25.0 MPa. In order to test the developed set-up, binary diffusion coefficients D at infinite dilution in supercritical carbon dioxide have been measured for a reference system, benzene, at temperatures in the range of 309.50-319.95 K. The effects of flow velocity, number of consecutive injections and absorbance at different wave numbers on the diffusion coefficient have been analysed. The obtained diffusion coefficients are of the order of 10-8 m 2/s and in excellent agreement with the available literature data.

Graphical abstract

Keywords

Topical Issue: Non-isothermal transport in complex fluids 

References

  1. 1.
    G.A. Montero, C.B. Smith, W.A. Hendrix, D.L. Butcher, Ind. Eng. Chem. Res. 39, 4806 (2000)CrossRefGoogle Scholar
  2. 2.
    G. Musie, M. Wei, B. Subramaniam, D.H. Busch, Coord. Chem. Rev. 219221, 789 (2001)CrossRefGoogle Scholar
  3. 3.
    C.A. Eckert, C.L. Liotta, D. Bush, J.S. Brown, J.P. Hallett, J. Phys. Chem. B 108, 18108 (2004)CrossRefGoogle Scholar
  4. 4.
    D. Hoang, S. Bensaid, G. Saracco, Green Process. Synth. 2, 407 (2013)Google Scholar
  5. 5.
    P. Girotra, S.K. Singh, K. Nagpal, Pharm. Dev. Technol. 18, 22 (2013)CrossRefGoogle Scholar
  6. 6.
    K.M. Sharif, M.M. Rahman, J. Azmir, A. Mohammed, M.H.A. Jahurul, F. Sahena, I.S.M. Zaidul, J. Food Engin. 124, 105 (2014)CrossRefGoogle Scholar
  7. 7.
    J.W. King, Annu. Rev. Food Sci. Technol. 5, 215 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Sun, Curr. Pharm. Des. 20, 349 (2014)CrossRefGoogle Scholar
  9. 9.
    Q.D. Truong, M.K. Devaraju, Y. Ganbe, T. Tomai, I. Honma, Sci. Rep. 4, 03975 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    G. Anitescu, R. Lin, L.L. Tavlarides, Directions in Engine Efficiency and Emissions Research (DEER) Conference, August 3-6, Dearborn, MI, USA (2009)Google Scholar
  11. 11.
    R.M. Weinheimer, D.F. Evans, E.L. Cussler, J. Colloid Interface Sci. 80, 357 (1981)CrossRefGoogle Scholar
  12. 12.
    H.-C. Chen, S.-H. Chen, Chem. Eng. Sci. 40, 521 (1985)CrossRefGoogle Scholar
  13. 13.
    I.M.J.J. van de Ven-Lucassen, F.G. Kieviet, P.J.A.M. Kerkhof, J. Chem. Eng. Data 40, 407 (1995)CrossRefGoogle Scholar
  14. 14.
    S. Sarraute, M.F. Costa Gomes, A.A.H. Pádua, J. Chem. Eng. Data 54, 2389 (2009)CrossRefGoogle Scholar
  15. 15.
    A. Mialdun, V. Sechenyh, J.C. Legros, J.M. Ortiz de Zrate, V. Shevtsova, J. Chem. Phys. 139, 104903 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    V. Sechenyh, J.C. Legros, V. Shevtsova, C. R. - Mec. 341, 490 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Mialdun, J.C. Legros, V. Yasnou, V. Sechenyh, V. Shevtsova, Eur. Phys. J. E 38, 27 (2015)CrossRefGoogle Scholar
  18. 18.
    J.C. Legros, Y. Gaponenko, A. Mialdun, T. Triller, A. Hammon, C. Bauer, W. Köhler, V. Shevtsova, Phys. Chem. Chem. Phys. 17, 27713 (2015)CrossRefGoogle Scholar
  19. 19.
    V. Sechenyh, J.C. Legros, A. Mialdun, J.M. Ortiz de Zrate, V. Shevtsova, J. Phys. Chem. B 120, 535 (2016)CrossRefGoogle Scholar
  20. 20.
    G. Taylor, Proc. R. Soc. London, Ser. A, Math. Phys. Sci. 219, 186 (1953)ADSCrossRefGoogle Scholar
  21. 21.
    G. Taylor, Proc. R. Soc. London, Ser. A, Math. Phys. Sci. 225, 473 (1954)ADSCrossRefGoogle Scholar
  22. 22.
    K.K. Liong, P.A. Wells, N.R. Foster, J. Supercritical Fluids 4, 91 (1991)CrossRefGoogle Scholar
  23. 23.
    J.M.H. Levelt Sengers, U.K. Deiters, U. Klask, P. Swidersky, G.M. Schneider, Int. J. Thermophys. 14, 893 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    T. Funazukuri, N. Nishimoto, N. Wakao, J. Chem. Eng. Data 39, 911 (1994)CrossRefGoogle Scholar
  25. 25.
    T.J. Bruno, J. Thermophys. Heat Transfer 8, 329 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    O.J. Catchpole, M.B. King, Ind. Eng. Chem. Res. 33, 1828 (1994)CrossRefGoogle Scholar
  27. 27.
    C.M. Silva, E.A. Macedo, Ind. Eng. Chem. Res. 37, 1490 (1998)CrossRefGoogle Scholar
  28. 28.
    J.J. Suarez, I. Medina, J.L. Bueno, Fluid Phase Equilibria 153, 167 (1998)CrossRefGoogle Scholar
  29. 29.
    H. Higashi, Y. Iwai, Y. Arai, Chem. Eng. Sci. 56, 3027 (2001)CrossRefGoogle Scholar
  30. 30.
    T. Funazukuri, C.Y. Kong, S. Kagei, J. Chromatogr. A 1037, 411 (2004)CrossRefGoogle Scholar
  31. 31.
    C.Y. Kong, T. Funazukuri, S. Kagei, J. Supercritical Fluids 37, 359 (2006)CrossRefGoogle Scholar
  32. 32.
    R. Lin, L.L. Tavlarides, J. Supercritical Fluids 52, 47 (2010)CrossRefGoogle Scholar
  33. 33.
    C. Secuianu, G.C. Maitland, J.P.M. Trusler, W.A. Wakeham, J. Chem. Eng. Data 56, 4840 (2011)CrossRefGoogle Scholar
  34. 34.
    S.P. Cadogan, G.C. Maitland, J.P.M. Trusler, J. Chem. Eng. Data 59, 519 (2014)CrossRefGoogle Scholar
  35. 35.
    Y. Suehiro, M. Nakajima, K. Yamada, M. Uematsu, J. Chem. Thermodyn. 28, 1153 (1996)CrossRefGoogle Scholar
  36. 36.
    Ph. Morin, M. Caude, H. Richard, R. Rosset, Chromotographia 21, 523 (1986)CrossRefGoogle Scholar
  37. 37.
    I. Swaid, G.M. Schneider, Ber. Bunseng. Phys. Chem. Chem. Phys. 83, 969 (1979)CrossRefGoogle Scholar
  38. 38.
    R. Feist, Diploma thesis, University of Bochum (1980)Google Scholar
  39. 39.
    J. Ellert, Diploma thesis, University of Bochum (1986)Google Scholar
  40. 40.
    P.R. Sassiat, P. Mourier, M.H. Caude, R.H. Rosset, Anal. Chem. 59, 1164 (1987)CrossRefGoogle Scholar
  41. 41.
    P. Swidersky, Diploma thesis, University of Bochum (1991)Google Scholar
  42. 42.
    S. Umezawa, A. Nagashima, J. Supercrit. Fluids 5, 242 (1992)CrossRefGoogle Scholar
  43. 43.
    J.L. Bueno, J.J. Suarez, J. Dizy, I. Medina, J. Chem. Eng. Data 38, 344 (1993)CrossRefGoogle Scholar
  44. 44.
    B.C. Smith, Spectroscopy 31, 34 (2016)Google Scholar
  45. 45.
    L.A.M. Janssen, Chem. Eng. Sci. 31, 215 (1976)CrossRefGoogle Scholar
  46. 46.
    A. Alizadeh, C.A. Nieto de Castro, W.A. Wakeham, Int. J. Thermophys. 1, 243 (1980)ADSCrossRefGoogle Scholar
  47. 47.
    A. Akgerman, C. Erkey, M. Orejuela, Ind. Eng. Chem. Res. 35, 911 (1996)CrossRefGoogle Scholar
  48. 48.
    K.-I. Ago, H. Nishiumi, J. Chem. Eng. Jpn. 32, 563 (1999)CrossRefGoogle Scholar
  49. 49.
    T. Funazukuri, C.Y. Kong, S. Kagei, Int. J. Thermophys. 22, 1643 (2001)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. Ancherbak
    • 1
  • C. Santos
    • 2
  • J. -C. Legros
    • 1
    • 3
  • A. Mialdun
    • 1
  • V. Shevtsova
    • 1
  1. 1.MRC, CP165/62, Université Libre de Bruxelles (ULB)BrusselsBelgium
  2. 2.Department of ChemistryUniversity of CoimbraCoimbraPortugal
  3. 3.Institute of Power EngineeringNational Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations