Equilibrium and non-equilibrium concentration fluctuations in a critical binary mixture

  • Fabio Giavazzi
  • Alessandro Fornasieri
  • Alberto Vailati
  • Roberto Cerbino
Regular Article
Part of the following topical collections:
  1. Non-isothermal transport in complex fluids


When a macroscopic concentration gradient is present across a binary mixture, long-ranged non-equilibrium concentration fluctuations (NCF) appear as a consequence of the coupling between the gradient and spontaneous equilibrium velocity fluctuations. Long-ranged equilibrium concentration fluctuations (ECF) may be also observed when the mixture is close to a critical point. Here we study the interplay between NCF and critical ECF in a near-critical mixture aniline/cyclohexane in the presence of a vertical concentration gradient. To this aim, we exploit a commercial optical microscope and a simple, custom-made, temperature-controlled cell to obtain simultaneous static and dynamic scattering information on the fluctuations. We first characterise the critical ECF at fixed temperature T above the upper critical solution temperature Tc, in the wide temperature range \( T-T_{c}\in [0.1,30]\) °C. In this range, we observe the expected critical scaling behaviour for both the scattering intensity and the mass diffusion coefficient and we determine the critical exponents \( \gamma\), \( \nu\) and \( \eta\), which are found in agreement with the 3D Ising values. We then study the system in the two-phase region (T < T c). In particular, we characterise the interplay between ECF and NCF when the mixture, initially at a temperature Ti, is rapidly brought to a temperature T f > T i. During the transient, a vertical diffusive mass flux is present that causes the onset of NCF, whose amplitude vanishes with time, as the flux goes to zero. We also study the time dependence of the equilibrium scattering intensity I eq, of the crossover wave vector q co and of the diffusion coefficient D during diffusion and find that all these quantities exhibit an exponential relaxation enslaved to the diffusive kinetics.

Graphical abstract


Topical Issue: Non-isothermal transport in complex fluids 


  1. 1.
    C. Domb, The Critical Point (Taylor & Francis, London, 1996)Google Scholar
  2. 2.
    L. Peliti, Statistical Mechanics in a Nutshell (Princeton University Press, 2011)Google Scholar
  3. 3.
    J.M. Ortiz De Zarate, J.V. Sengers, Hydrodynamic fluctuations in fluids and fluid mixtures (Elsevier, 2006)Google Scholar
  4. 4.
    A. Vailati, M. Giglio, Nature 390, 262 (1997)CrossRefADSGoogle Scholar
  5. 5.
    P. Cicuta, A. Vailati, M. Giglio, Phys. Rev. E 62, 4920 (2000)CrossRefADSGoogle Scholar
  6. 6.
    P. Cicuta, A. Vailati, M. Giglio, Appl. Opt. 40, 4140 (2001)CrossRefADSGoogle Scholar
  7. 7.
    P.N. Segrè, Physica A 198, 46 (1993)CrossRefADSGoogle Scholar
  8. 8.
    A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, G. Nikolaenko, C.J. Takacs, D.S. Cannell, W.V. Meyer, A.E. Smart, Appl. Opt. 45, 2155 (2006)CrossRefADSGoogle Scholar
  9. 9.
    A. Vailati, R. Cerbino, S. Mazzoni, C.J. Takacs, D.S. Cannell, M. Giglio, Nat. Commun. 2, 290 (2011)CrossRefADSGoogle Scholar
  10. 10.
    R. Cerbino, Y. Sun, A. Donev, A. Vailati, Sci. Rep. 5, 14486 (2015)CrossRefADSGoogle Scholar
  11. 11.
    F. Croccolo, C. Giraudet, H. Bataller, R. Cerbino, A. Vailati, Micrograv. Sci. Technol. 28, 467 (2016)CrossRefGoogle Scholar
  12. 12.
    C.J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, D.S. Cannell, Phys. Rev. Lett. 106, 244502 (2011)CrossRefADSGoogle Scholar
  13. 13.
    R. Cerbino, V. Trappe, Phys. Rev. Lett. 100, 188102 (2008)CrossRefADSGoogle Scholar
  14. 14.
    F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, R. Cerbino, Phys. Rev. E 80, 031403 (2009)CrossRefADSGoogle Scholar
  15. 15.
    F. Giavazzi, R. Cerbino, J. Opt. 16, 083001 (2014)CrossRefADSGoogle Scholar
  16. 16.
    A. Pelissetto, E. Vicari, Phys. Rep. 368, 549 (2002)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    B.J. Berne, R. Pecora, Dynamic light scattering: with applications to chemistry, biology, and physics (Courier Corporation, 1976)Google Scholar
  18. 18.
    R.D. Mountain, J.M. Deutch, J. Chem. Phys. 20, 1103 (1969)CrossRefADSGoogle Scholar
  19. 19.
    M.E. Fisher, J. Math. Phys. 5, 944 (1964)CrossRefADSGoogle Scholar
  20. 20.
    R.F. Chang, H. Burstyn, J.V. Sengers, Phys. Rev. A 19, 866 (1979)CrossRefADSGoogle Scholar
  21. 21.
    H.C. Burstyn, J.V. Sengers, J.K. Bhattacharjee, R.A. Ferrell, Phys. Rev. A 28, 1567 (1983)CrossRefADSGoogle Scholar
  22. 22.
    J.V. Sengers, J.G. Shanks, J. Stat. Phys. 137, 857 (2009)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    J.V. Sengers, Int. J. Thermophys. 6, 203 (1985)CrossRefADSGoogle Scholar
  24. 24.
    A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2002)Google Scholar
  25. 25.
    K. Hamano, S. Teshigawara, T. Koyama, N. Kuwahara, Phys. Rev. A 33, 485 (1986)CrossRefADSGoogle Scholar
  26. 26.
    J. Schmitz, L. Belkoura, D. Woermann, Ber. Bunsen-Ges. Phys. Chem. 99, 848 (1995)CrossRefGoogle Scholar
  27. 27.
    P. Berge, P. Calmettes, C. Laj, M. Tournarie, B. Volochine, Phys. Rev. Lett. 24, 1223 (1970)CrossRefADSGoogle Scholar
  28. 28.
    S. Will, A. Leipertz, Int. J. Thermophys. 20, 791 (1999)CrossRefGoogle Scholar
  29. 29.
    R. Folk, G. Moser, J. Phys. A 39, R207 (2006)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    G. Grinstein, Scale Invariance, Interfaces and Non-Equilibrium Systems (Plenum Press, New York, 2006) pp. 261--293Google Scholar
  31. 31.
    D. Brogioli, F. Croccolo, A. Vailati, Phys. Rev. E 94, 022142 (2016)CrossRefADSGoogle Scholar
  32. 32.
    B.M. Law, J.C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989)CrossRefADSGoogle Scholar
  33. 33.
    J.C. Nieuwoudt, B.M. Law, Phys. Rev. A 42, 2003 (1990)CrossRefADSGoogle Scholar
  34. 34.
    S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, 1962)Google Scholar
  35. 35.
    J.M. Ortiz de Zá, Eur. Phys. J. E 15, 319 (2004)CrossRefGoogle Scholar
  36. 36.
    W.B. Li, P.N. Segrè, Physica A 204, 399 (1994)CrossRefADSGoogle Scholar
  37. 37.
    W.B. Li, P.N. Segre, J.V. Sengers, R.W. Gammon, J. Phys.: Condens. Matter 6, A119 (1994)ADSGoogle Scholar
  38. 38.
    L.D. Landau, L.E.M., Fluid Mechanics (Pergamon Press, New York, 1959)Google Scholar
  39. 39.
    P.N. Segrè, Physica A 198, 46 (1993)CrossRefADSGoogle Scholar
  40. 40.
    A. Vailati, M. Giglio, Phys. Rev. Lett. 77, 1484 (1996)CrossRefADSGoogle Scholar
  41. 41.
    F. Giavazzi, A. Vailati, Phys. Rev. E 80, 015303 (2009)CrossRefADSGoogle Scholar
  42. 42.
    A. Vailati, M. Giglio, Phys. Rev. E 58, 4361 (1998)CrossRefADSGoogle Scholar
  43. 43.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Phys. Rev. E 76, 041112 (2007)CrossRefADSGoogle Scholar
  44. 44.
    F. Giavazzi, G. Savorana, A. Vailati, R. Cerbino, Soft Matter 12, 6588 (2016)CrossRefADSGoogle Scholar
  45. 45.
    C. Giraudet, H. Bataller, Y. Sun, A. Donev, J.M. Ortiz de Zá, EPL 111, 60013 (2015)CrossRefADSGoogle Scholar
  46. 46.
    D. Brogioli, A. Vailati, M. Giglio, Phys. Rev. E 61, R1 (2000)CrossRefADSGoogle Scholar
  47. 47.
    P. Cicuta, A. Vailati, M. Giglio, Appl. Opt. 40, 4140 (2001)CrossRefADSGoogle Scholar
  48. 48.
    J. Crank, The Mathematics of Diffusion (Oxford University, New York, 1975)Google Scholar
  49. 49.
    D. Atack, O.K. Rice, Discuss. Faraday Soc. 15, 210 (1953)CrossRefGoogle Scholar
  50. 50.
    P. Calmettes, I. Laguës, C. Laj, Phys. Rev. Lett. 28, 478 (1972)CrossRefADSGoogle Scholar
  51. 51.
    M. Giglio, A. Vendramini, Phys. Rev. Lett. 35, 168 (1975)CrossRefADSGoogle Scholar
  52. 52.
    M. Giglio, A. Vendramini, Phys. Rev. Lett. 34, 561 (1975)CrossRefADSGoogle Scholar
  53. 53.
    E. Strandgaard Andersen, P. Jespergaard, O. Ostergaard, Data Book (Studio Tesi, Pordenone, 1985)Google Scholar
  54. 54.
    F. Scheffold, R. Cerbino, Curr. Opin. Colloid Interface Sci. 12, 50 (2007)CrossRefGoogle Scholar
  55. 55.
    R. Cerbino, A. Vailati, Curr. Opin. Colloid Interface Sci. 14, 416 (2009)CrossRefGoogle Scholar
  56. 56.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Appl. Opt. 45, 2166 (2006)CrossRefADSGoogle Scholar
  57. 57.
    S. Buzzaccaro, E. Secchi, R. Piazza, Phys. Rev. Lett. 111, 048101 (2013)CrossRefADSGoogle Scholar
  58. 58.
    G. Arcovito, C. Faloci, M. Roberti, L. Mistura, Phys. Rev. Lett. 22, 1040 (1969)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fabio Giavazzi
    • 1
  • Alessandro Fornasieri
    • 1
  • Alberto Vailati
    • 2
  • Roberto Cerbino
    • 1
  1. 1.Dipartimento di Biotecnologie Mediche e Medicina TraslazionaleUniversità degli Studi di MilanoSegrateItaly
  2. 2.Dipartimento di FisicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations