Advertisement

Generalized Swift-Hohenberg models for dense active suspensions

  • Anand U. OzaEmail author
  • Sebastian Heidenreich
  • Jörn Dunkel
Regular Article
Part of the following topical collections:
  1. Nonequilibrium Collective Dynamics in Condensed and Biological Matter

Abstract.

In describing the physics of living organisms, a mathematical theory that captures the generic ordering principles of intracellular and multicellular dynamics is essential for distinguishing between universal and system-specific features. Here, we compare two recently proposed nonlinear high-order continuum models for active polar and nematic suspensions, which aim to describe collective migration in dense cell assemblies and the ordering processes in ATP-driven microtubule-kinesin networks, respectively. We discuss the phase diagrams of the two models and relate their predictions to recent experiments. The satisfactory agreement with existing experimental data lends support to the hypothesis that non-equilibrium pattern formation phenomena in a wide range of active systems can be described within the same class of higher-order partial differential equations.

Graphical abstract

Keywords

Topical Issue: Nonequilibrium Collective Dynamics in Condensed and Biological Matter 

Supplementary material

10189_2016_323_MOESM1_ESM.mov (5.2 mb)
Supplementary material
10189_2016_323_MOESM2_ESM.mov (4.1 mb)
Supplementary material
10189_2016_323_MOESM3_ESM.mov (3.2 mb)
Supplementary material
10189_2016_323_MOESM4_ESM.mov (7 mb)
Supplementary material
10189_2016_323_MOESM5_ESM.mov (5 mb)
Supplementary material
10189_2016_323_MOESM6_ESM.mov (8.6 mb)
Supplementary material
10189_2016_323_MOESM7_ESM.mov (15.4 mb)
Supplementary material
10189_2016_323_MOESM8_ESM.mov (2.5 mb)
Supplementary material

References

  1. 1.
    A.M. Turing, Philos. Trans. R. Soc. B 237, 37 (1952)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Cross, H. Greenside. Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, Cambridge, 2009)Google Scholar
  3. 3.
    S. Taheri-Araghi, S.D. Brown, J.T. Sauls, D.B. McIntosh, S. Jun, Annu. Rev. Biophys. 44, 123 (2015)CrossRefGoogle Scholar
  4. 4.
    S.F. Gilbert, Developmental Biology, 8th edition (Sinauer Associates Inc., Sunderland, Massachusetts, USA, 2006)Google Scholar
  5. 5.
    J. Swift, P.C. Hohenberg, Phys. Rev. A 15, 319 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    N. Stoop, R. Lagrange, D. Terwagne, P.M. Reis, J. Dunkel, Nat. Mater. 14, 337 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J. Dunkel, S. Heidenreich, K. Drescher, H.H. Wensink, M. Bär, R.E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    A.U. Oza, J. Dunkel, New. J. Phys. 18, 093006 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Stephen J. DeCamp, Gabriel S. Redner, Aparna Baskaran, Michael F. Hagan, Zvonimir Dogic, Nat. Mater. 14, 1110 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A. Czirók, T. Vicsek, Physica A 281, 17 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    H.H. Wensink, V. Kantsler, R.E. Goldstein, J. Dunkel, Phys. Rev. E 89, 010302(R) (2014)ADSCrossRefGoogle Scholar
  15. 15.
    F. Peruani, A. Deutsch, M. Bär, Phys. Rev. E 74, 030904 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    F. Ginelli, F. Peruani, M. Bär, H. Chaté, Phys. Rev. Lett. 104, 184502 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    F.C. Keber, E. Loiseau, T. Sanchez, S.J. DeCamp, L. Giomi, M.J. Bowick, M.C. Marchetti, Z. Dogic, A.R. Bausch, Science 345, 1135 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Phys. Rev. Lett. 93, 098103 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    H.P. Zhang, A. Be’er, R.S. Smith, E.-L. Florin, H.L. Swinney, EPL 87, 48011 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Nature 467, 73 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    L.H. Cisneros, J.O. Kessler, S. Ganguly, R.E. Goldstein, Phys. Rev. E 83, 061907 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    D.L. Koch, G. Subramanian, Annu. Rev. Fluid Mech. 43, 637 (2011)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Nature 483, 448 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Kuo-An Liu, I. Lin, Phys. Rev. E 86, 011924 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    A. Sokolov, I.S. Aranson, Phys. Rev. Lett. 109, 248109 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    A. Zöttl, H. Stark, Phys. Rev. Lett. 112, 118101 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    M. Hennes, K. Wolff, H. Stark, Phys. Rev. Lett. 112, 238104 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    C.W. Wolgemuth, Biophys. J. 95, 1564 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    L. Giomi, M.C. Marchetti, T.B. Liverpool, Phys. Rev. Lett. 101, 198101 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    R. Großmann, P. Romanczuk, M. Bär, L. Schimansky-Geier, Phys. Rev. Lett. 113, 258104 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    A. Peshkov, I.S. Aranson, E. Bertin, H. Chaté, F. Ginelli, Phys. Rev. Lett. 109, 268701 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    D. Saintillan, M. Shelley, Phys. Fluids 20, 123304 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    D. Saintillan, M. Shelley, J. R. Soc. Interface 9, 571 (2011)CrossRefGoogle Scholar
  37. 37.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012)CrossRefGoogle Scholar
  39. 39.
    P. Romanczuk, L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    R. Großmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 14, 073033 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    J. Taktikos, V. Zaburdaev, H. Stark, Phys. Rev. E 85, 051901 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    H. Wioland, F.G. Woodhouse, J. Dunkel, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    E. Lushi, H. Wioland, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 111, 9733 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    A. Kaiser, A. Peshkov, A. Sokolov, B. ten Hagen, H. Löwen, I.S. Aranson, Phys. Rev. Lett. 112, 158101 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    A. Kaiser, A. Sokolov, I.S. Aranson, H. Löwen, Eur. Phys. J. ST 224, 1275 (2015)CrossRefGoogle Scholar
  46. 46.
    J. Dunkel, S. Heidenreich, M Bär, R.E. Goldstein, New J. Phys. 15, 045016 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    J. Toner, Y. Tu, S. Ramaswamy, Ann. Phys. 318, 170 (2005)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    U. Frisch. Turbulence (Cambridge University Press, Cambridge, 2004)Google Scholar
  51. 51.
    S. Heidenreich, J. Dunkel, S.H.L. Klapp, M. Bär, Phys. Rev. E 94, 020601(R) (2016)ADSCrossRefGoogle Scholar
  52. 52.
    R.H. Kraichnan, D. Montogomery, Rep. Prog. Phys. 43, 547 (1980)ADSCrossRefGoogle Scholar
  53. 53.
    H. Kellay, W.I. Goldburg, Rep. Prog. Phys. 65, 845 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    R. Voituriez, J.F. Joanny, J. Prost, Phys. Rev. Lett. 96, 028102 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    N.S. Rossen, J.M. Tarp, J. Mathiesen, M.H. Jensen, L.B. Oddershede, Nat. Commun. 5, 5720 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    V. Bratanov, F. Jenko, E. Frey, Proc. Natl. Acad. Sci. U.S.A. 112, 15048 (2015)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    I.S. Aranson, A. Snezhko, J.S. Olafsen, J.S. Urbach, Science 320, 612 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    S. Mishra, R.A. Simha, S. Ramaswamy, J. Stat. Mech.: Theor. Exp., P02003 (2010)Google Scholar
  60. 60.
    X.-Q. Shi, Y.-Q. Ma, Nat. Commun. 4, 3013 (2013)ADSGoogle Scholar
  61. 61.
    N. Goldenfeld, C. Woese, Annu. Rev. Condens. Matter Phys. 2, 375 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    A. Baskaran, M.C. Marchetti, Phys. Rev. E 77, 011920 (2008)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    T.C. Adhyapak, S. Ramaswamy, J. Toner, Phys. Rev. Lett. 110, 118102 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    Sumesh P. Thampi, Ramin Golestanian, Julia M. Yeomans, Phys. Rev. Lett. 111, 118101 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    L. Giomi, M.J. Bowick, X. Ma, M.C. Marchetti, Phys. Rev. Lett. 110, 228101 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    E. Putzig, G.S. Redner, A. Baskaran, A. Baskaran, Soft Matter 12, 3854 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    A. Doostmohammadi, M.F. Adamer, S.P. Thampi, J.M. Yeomans, Nat. Commun. 7, 10557 (2016)ADSCrossRefGoogle Scholar
  68. 68.
    T. Gao, R. Blackwell, M.A. Glaser, M.D. Betterton, M.J. Shelley, Phys. Rev. Lett. 114, 048101 (2015)ADSCrossRefGoogle Scholar
  69. 69.
    F.G. Woodhouse, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 110, 14132 (2013)ADSCrossRefGoogle Scholar
  70. 70.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)ADSCrossRefGoogle Scholar
  71. 71.
    P.G. de Gennes, J. Prost. The Physics of Liquid Crystals, Vol. 2 (Oxford University Press, Oxford, 1995)Google Scholar
  72. 72.
    C.P. Brangwynne, F.C. MacKintosh, S. Kumar, N.A. Geisse, J. Talbot, L. Mahadevan, K.K. Parker, D.E. Ingber, D.A. Weitz, J. Cell. Biol. 173, 733 (2006)CrossRefGoogle Scholar
  73. 73.
    V. Kantsler, R.E. Goldstein, Phys. Rev. Lett. 108, 038103 (2012)ADSCrossRefGoogle Scholar
  74. 74.
    A.-K. Kassam, L.N. Trefethen, SIAM J. Sci. Comput. 26, 1214 (2005)MathSciNetCrossRefGoogle Scholar
  75. 75.
    P. Guillamat, J. Ignés-Mullol, S. Shankar, M.C. Marchetti, F. Sagués, arXiv:1606.05764 (2016)
  76. 76.
    L. Giomi, M.J. Bowick, P. Mishra, R. Sknepnek, M.C. Marchetti, Philos. Trans. R. Soc. A 372, 20130365 (2014)ADSCrossRefGoogle Scholar
  77. 77.
    A. Sokolov, I.S. Aranson, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anand U. Oza
    • 1
    Email author
  • Sebastian Heidenreich
    • 2
  • Jörn Dunkel
    • 3
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Physikalisch-Technische Bundesanstalt Braunschweig und BerlinBerlinGermany
  3. 3.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations