Perspective: parameters in a self-consistent field theory of multicomponent wormlike-copolymer melts

Colloquium

Abstract.

We review a formalism that can be used to calculate the microphase-separated crystallographic structures of multi-component wormlike polymer melts. The approach is based on a self-consistent field theory of wormlike polymers where the persistence length of each component is an important parameter. We emphasize on an analysis of the number of independent parameters required to specify a problem in general, for a system that includes Flory-Huggins and Maier-Saupe energies. Examples of recent applications are also briefly demonstrated: AB homopolymer interface, AB diblock copolymers, and rod-coil copolymers.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986)Google Scholar
  2. 2.
    G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, 2006)Google Scholar
  3. 3.
    E. Helfand, J. Chem. Phys. 62, 999 (1975)ADSCrossRefGoogle Scholar
  4. 4.
    M.D. Whitmore, J.D. Vavasour, Acta Polymer. 46, 341 (1995)CrossRefGoogle Scholar
  5. 5.
    T.A. Vilgis, Phys. Rep. 336, 167 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    M.W. Matsen, J. Phys.: Condens. Matter 14, R21 (2002)ADSGoogle Scholar
  7. 7.
    G.H. Fredrickson, V. Ganesan, F. Drolet, Macromolecules 35, 16 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M. Müller, F. Schmid, Adv. Polym. Sci. 185, 1 (2005)CrossRefGoogle Scholar
  9. 9.
    I.W. Hamley, Developments in Block Copolymer Science and Technology (Wiley, New York, 2004)Google Scholar
  10. 10.
    A.-C. Shi, in Encyclopedia of Polymeric Nanomaterials, edited by S. Kobayashi, K. Mullen (Springer, Berlin, 2015)Google Scholar
  11. 11.
    N. Saito, K. Takahashi, Y. Yunoki, J. Phys. Soc. Jpn. 22, 219 (1967)ADSCrossRefGoogle Scholar
  12. 12.
    M.W. Matsen, J. Chem. Phys. 104, 7758 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    D.C. Morse, G.H. Fredrickson, Phys. Rev. Lett. 73, 3235 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    F. Schmid, M. Müller, Macromolecules 28, 8639 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Jiang, W.Y. Zhang, J.Z.Y. Chen, Phys. Rev. E 84, 041803 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Jiang, J.Z.Y. Chen, Phys. Rev. Lett. 110, 138305 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    M. Shah, V. Ganesan, J. Chem. Phys. 130, 054904 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    W. Song, P. Tang, F. Qiu, Y. Yang, A.C. Shi, Soft Matter 7, 929 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    N.A. Kumar, V. Ganesana, J. Chem. Phys. 136, 101101 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J. Gao, P. Tang, Y. Yang, Soft Matter 9, 69 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    S. Li, Y. Jiang, J.Z.Y. Chen, Soft Matter 10, 8932 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Tang, Y. Jiang, X. Zhang, D. Yan, J.Z.Y. Chen, Macromolecules 48, 9060 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    T. Odijk, Macromolecules 19, 2313 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    A. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP, New York, 1994)Google Scholar
  25. 25.
    K. Freed, Adv. Chem. Phys. 22, 1 (1972)Google Scholar
  26. 26.
    Q. Liang, J.F. Li, P. Zhang, J.Z.Y. Chen, J. Chem. Phys. 138, 244910 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press: Oxford, 1993)Google Scholar
  28. 28.
    A.J. Liu, G.H. Fredrickson, Macromolecules 26, 2817 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    R.R. Netz, M. Schick, Phys. Rev. Lett. 77, 302 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    V. Pryamitsyn, V. Ganesan, J. Chem. Phys. 120, 5824 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    W. Song, P. Tang, H. Zhang, Y. Yang, A.-C. Shi, Macromolecules 42, 6300 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    G.H. Fredrickson, L. Leibler, Macromolecules 23, 531 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    R. Hołyst, P. Oswald, Macromol. Theory Simul. 10, 1 (2001)CrossRefGoogle Scholar
  34. 34.
    V.V. Rusakov, M.I. Shliomis, J. Phys. Lett. (Paris) 46, L935 (1985)CrossRefGoogle Scholar
  35. 35.
    A.J. Spakowitz, Z.-G. Wang, Macromolecules 37, 5814 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Jiang, X. Zhang, B. Miao, D. Yan, J. Chem. Phys. 142, 154901 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949)ADSCrossRefGoogle Scholar
  38. 38.
    A.R. Khokhlov, A.N. Semenov, Physica A 108, 546 (1981)ADSCrossRefGoogle Scholar
  39. 39.
    Z.Y. Chen, Macromolecules 26, 3419 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    X. Zhang, Y. Jiang, B. Miao, Y. Chen, D. Yan, J.Z.Y. Chen, Soft Matter 10, 5405 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Jiang, J.Z.Y. Chen, Phys. Rev. E 88, 042603 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    E. Helfand, Y. Tagami, J. Polym. Sci. B 9, 741 (1971)CrossRefGoogle Scholar
  43. 43.
    Y. Jiang, J.Z.Y. Chen, in Self-Assembling Systems: Theory and Simulation, edited by L.T. Yan (John Wiley, Ltd, 2017)Google Scholar
  44. 44.
    M. Müller, M. Schick, Macromolecules 29, 8900 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    M.W. Matsen, C. Barrett, J. Chem. Phys. 109, 4108 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    G. Yang, P. Tang, Y. Yang, Q. Wang, J. Phys. Chem. B 114, 14897 (2011)CrossRefGoogle Scholar
  47. 47.
    Y.A. Kriksin, P.G. Khalatur, Macromol. Theory Simul. 21, 382 (2012)CrossRefGoogle Scholar
  48. 48.
    C. Ryu, J. Ruokolainen, G. Fredrickson, E. Kramer, S. Hahn, Macromolecules 35, 2157 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    T. Hermel, S. Hahn, K. Chaffin, W. Gerberich, F. Bates, Macromolecules 36, 2190 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    C. Koo, L. Wu, L. Lim, M. Mahanthappa, M. Hillmyer, F. Bates, Macromolecules 38, 6090 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    A. Phatak, L. Lim, C. Reaves, F. Bates, Macromolecules 39, 6221 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    A. Hotta, E. Cochran, J. Ruokolainen, V. Khanna, G.H. Fredrickson, E. Kramer, Y.-W. Shin, F. Shimizu, A.E. Cherian, J.M.R.P.D. Hustad, G.W. Coates, Proc. Natl. Acad. Sci. U.S.A. 103, 15327 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill Book Company, New York, 1965)Google Scholar
  54. 54.
    O. Kratky, G. Porod, Recl. Trav. Chim. 68, 1106 (1949)CrossRefGoogle Scholar
  55. 55.
    J.Z.Y. Chen, Prog. Polym. Sci. 54-55, 3 (2016)CrossRefGoogle Scholar
  56. 56.
    J.D. Vavasour, M.D. Whitmore, Macromolecules 26, 7070 (1993)ADSCrossRefGoogle Scholar
  57. 57.
    M.W. Matsen, M. Schick, Macromolecules 27, 4014 (1994)ADSCrossRefGoogle Scholar
  58. 58.
    M.W. Matsen, F.S. Bates, J. Polym. Sci. Part B 35, 945 (1997)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Chemistry and Environment, Center of Soft Matter Physics and its ApplicationsBeihang UniversityBeijingChina
  2. 2.Department of PhysicsWenzhou UniversityWenzhouChina
  3. 3.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada

Personalised recommendations