Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion

Abstract.

A micron-sized droplet of bromine water immersed in a surfactant-laden oil phase can swim (S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13 073021 (2011). The bromine reacts with the surfactant at the droplet interface and generates a surfactant mixture. It can spontaneously phase-separate due to solutocapillary Marangoni flow, which propels the droplet. We model the system by a diffusion-advection-reaction equation for the mixture order parameter at the interface including thermal noise and couple it to fluid flow. Going beyond previous work, we illustrate the coarsening dynamics of the surfactant mixture towards phase separation in the axisymmetric swimming state. Coarsening proceeds in two steps: an initially slow growth of domain size followed by a nearly ballistic regime. On larger time scales thermal fluctuations in the local surfactant composition initiates random changes in the swimming direction and the droplet performs a persistent random walk, as observed in experiments. Numerical solutions show that the rotational correlation time scales with the square of the inverse noise strength. We confirm this scaling by a perturbation theory for the fluctuations in the mixture order parameter and thereby identify the active emulsion droplet as an active Brownian particle.

Graphical abstract

References

  1. 1

    A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004)

    ADS  Article  Google Scholar 

  2. 2

    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005)

    ADS  Article  Google Scholar 

  3. 3

    E. Gauger, H. Stark, Phys. Rev. E 74, 021907 (2006)

    ADS  Article  Google Scholar 

  4. 4

    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5

    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    T. Fenchel, Protist 152, 329 (2001)

    Article  Google Scholar 

  7. 7

    T. Qiu, T.C. Lee, A.G. Mark, K.I. Morozov, R. Münster, O. Mierka, S. Turek, A.M. Leshansky, P. Fischer, Nat. Commun. 5, 5119 (2014)

    ADS  Article  Google Scholar 

  8. 8

    D. Alizadehrad, T. Krüger, M. Engstler, H. Stark, PLoS Comput. Biol. 11, e1003967 (2015)

    ADS  Article  Google Scholar 

  9. 9

    C.C. Maass, C. Krüger, S. Herminghaus, C. Bahr, Annu. Rev. Condens. Matter 7, 171 (2016)

    ADS  Article  Google Scholar 

  10. 10

    M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)

    ADS  Article  Google Scholar 

  11. 11

    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012)

    Article  Google Scholar 

  12. 12

    A. Zöttl, H. Stark, Phys. Rev. Lett. 108, 218104 (2012)

    ADS  Article  Google Scholar 

  13. 13

    S. Michelin, E. Lauga, D. Bartolo, Phys. Fluids 25, 061701 (2013)

    ADS  Article  Google Scholar 

  14. 14

    J.R. Howse, R.A. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    ADS  Article  Google Scholar 

  15. 15

    V. Zaburdaev, S. Uppaluri, T. Pfohl, M. Engstler, R. Friedrich, H. Stark, Phys. Rev. Lett. 106, 208103 (2011)

    ADS  Article  Google Scholar 

  16. 16

    M. Theves, J. Taktikos, V. Zaburdaev, H. Stark, C. Beta, Biophys. J. 105, 1915 (2013)

    ADS  Article  Google Scholar 

  17. 17

    F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)

    ADS  Article  Google Scholar 

  18. 18

    G. Volpe, I. Buttinoni, D. Vogt, H.J. Kummerer, C. Bechinger, Soft Matter 7, 8810 (2011)

    ADS  Article  Google Scholar 

  19. 19

    K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 108, 10940 (2011)

    ADS  Article  Google Scholar 

  20. 20

    T. Majmudar, E.E. Keaveny, J. Zhang, M.J. Shelley, J. R. Soc. Interface 9, 1809 (2012)

    Article  Google Scholar 

  21. 21

    K. Schaar, A. Zöttl, H. Stark, Phys. Rev. Lett. 115, 038101 (2015)

    ADS  Article  Google Scholar 

  22. 22

    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    ADS  Article  Google Scholar 

  23. 23

    T. Ishikawa, T.J. Pedley, Phys. Rev. Lett. 100, 088103 (2008)

    ADS  Article  Google Scholar 

  24. 24

    A.A. Evans, T. Ishikawa, T. Yamaguchi, E. Lauga, Phys. Fluids 23, 111702 (2011)

    ADS  Article  Google Scholar 

  25. 25

    J. Dunkel, S. Heidenreich, K. Drescher, H.H. Wensink, M. Bär, R.E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013)

    ADS  Article  Google Scholar 

  26. 26

    F. Alarcón, I. Pagonabarraga, J. Mol. Liq. 185, 56 (2013)

    Article  Google Scholar 

  27. 27

    A. Zöttl, H. Stark, Phys. Rev. Lett. 112, 118101 (2014)

    ADS  Article  Google Scholar 

  28. 28

    M. Hennes, K. Wolff, H. Stark, Phys. Rev. Lett. 112, 238104 (2014)

    ADS  Article  Google Scholar 

  29. 29

    O. Pohl, H. Stark, Phys. Rev. Lett. 112, 238303 (2014)

    ADS  Article  Google Scholar 

  30. 30

    A. Zöttl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)

    ADS  Google Scholar 

  31. 31

    A. Walther, A.H. Müller, Soft Matter 4, 663 (2008)

    ADS  Article  Google Scholar 

  32. 32

    T. Bickel, A. Majee, A. Würger, Phys. Rev. E 88, 012301 (2013)

    ADS  Article  Google Scholar 

  33. 33

    R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)

    ADS  Article  Google Scholar 

  34. 34

    W.F. Paxton, A. Sen, T.E. Mallouk, Chem. Eur. J. 11, 6462 (2005)

    Article  Google Scholar 

  35. 35

    J.L. Moran, J.D. Posner, J. Fluid. Mech. 680, 31 (2011)

    MathSciNet  Article  Google Scholar 

  36. 36

    I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, C. Bechinger, J. Phys.: Condens. Matter 24, 284129 (2012)

    Google Scholar 

  37. 37

    M. Schmitt, H. Stark, EPL 101, 44008 (2013)

    ADS  Article  Google Scholar 

  38. 38

    M.J. Lighthill, Commun. Pur. Appl. Math. 5, 109 (1952)

    MathSciNet  Article  Google Scholar 

  39. 39

    J.R. Blake, J. Fluid. Mech. 46, 199 (1971)

    ADS  Article  Google Scholar 

  40. 40

    M.T. Downton, H. Stark, J. Phys.: Condens. Matter 21, 204101 (2009)

    ADS  Google Scholar 

  41. 41

    O. Pak, E. Lauga, J. Eng. Math. 88, 1 (2014)

    MathSciNet  Article  Google Scholar 

  42. 42

    M. Schmitt, H. Stark, Phys. Fluids 28, 012106 (2016)

    ADS  Article  Google Scholar 

  43. 43

    M.M. Hanczyc, T. Toyota, T. Ikegami, N. Packard, T. Sugawara, J. Am. Chem. Soc. 129, 9386 (2007)

    Article  Google Scholar 

  44. 44

    T. Toyota, N. Maru, M.M. Hanczyc, T. Ikegami, T. Sugawara, J. Am. Chem. Soc. 131, 5012 (2009)

    Article  Google Scholar 

  45. 45

    S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13, 073021 (2011)

    ADS  Article  Google Scholar 

  46. 46

    H. Kitahata, N. Yoshinaga, K.H. Nagai, Y. Sumino, Phys. Rev. E 84, 015101 (2011)

    ADS  Article  Google Scholar 

  47. 47

    T. Banno, R. Kuroha, T. Toyota, Langmuir 28, 1190 (2012)

    Article  Google Scholar 

  48. 48

    T. Ban, T. Yamagami, H. Nakata, Y. Okano, Langmuir 29, 2554 (2013)

    Article  Google Scholar 

  49. 49

    S. Herminghaus, C.C. Maass, C. Krüger, S. Thutupalli, L. Goehring, C. Bahr, Soft Matter 10, 7008 (2014)

    ADS  Article  Google Scholar 

  50. 50

    Z. Izri, M.N. van der Linden, S. Michelin, O. Dauchot, Phys. Rev. Lett. 113, 248302 (2014)

    ADS  Article  Google Scholar 

  51. 51

    Y.J. Chen, Y. Nagamine, K. Yoshikawa, Phys. Rev. E 80, 016303 (2009)

    ADS  Article  Google Scholar 

  52. 52

    O. Bliznyuk, H.P. Jansen, E.S. Kooij, H.J.W. Zandvliet, B. Poelsema, Langmuir 27, 11238 (2011)

    Article  Google Scholar 

  53. 53

    A.Y. Rednikov, Y.S. Ryazantsev, M.G. Velarde, J. Non-Equil. Thermodyn. 19, 95 (1994)

    ADS  Article  Google Scholar 

  54. 54

    A.Y. Rednikov, Y.S. Ryazantsev, M.G. Velarde, Phys. Fluids 6, 451 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  55. 55

    M.G. Velarde, A.Y. Rednikov, Y.S. Ryazantsev, J. Phys.: Condens. Matter 8, 9233 (1996)

    ADS  Google Scholar 

  56. 56

    M.G. Velarde, Phil. Trans. R. Soc. Lond. A 356, 829 (1998)

    ADS  Article  Google Scholar 

  57. 57

    N. Yoshinaga, K.H. Nagai, Y. Sumino, H. Kitahata, Phys. Rev. E 86, 016108 (2012)

    ADS  Article  Google Scholar 

  58. 58

    E. Tjhung, D. Marenduzzo, M.E. Cates, Proc. Natl. Acad. Sci. U.S.A. 109, 12381 (2012)

    ADS  Article  Google Scholar 

  59. 59

    N. Yoshinaga, Phys. Rev. E 89, 012913 (2014)

    ADS  Article  Google Scholar 

  60. 60

    S. Yabunaka, T. Ohta, N. Yoshinaga, J. Chem. Phys. 136, 074904 (2012)

    ADS  Article  Google Scholar 

  61. 61

    K. Furtado, C.M. Pooley, J.M. Yeomans, Phys. Rev. E 78, 046308 (2008)

    ADS  Article  Google Scholar 

  62. 62

    A. Bray, Phil. Trans. R. Soc. Lond. A 361, 781 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  63. 63

    V.A. Nepomniashchii, M.G. Velarde, P. Colinet, Interfacial phenomena and convection, 1st edition (Chapman & Hall/CRC, 2002)

  64. 64

    R.C. Desai, R. Kapral, Dynamics of Self-Organized and Self-Assembled Structures (Cambridge University Press, 2009)

  65. 65

    S. Chandrasekhar, Hydrodynamic and hydromagnetic stability (Oxford University Press, 1961)

  66. 66

    H.A. Stone, A.D. Samuel, Phys. Rev. Lett. 77, 4102 (1996)

    ADS  Article  Google Scholar 

  67. 67

    J. Bławzdziewicz, P. Vlahovska, M. Loewenberg, Physica A 276, 50 (2000)

    ADS  Article  Google Scholar 

  68. 68

    J.A. Hanna, P.M. Vlahovska, Phys. Fluids 22, 013102 (2010)

    ADS  Article  Google Scholar 

  69. 69

    J.T. Schwalbe, F.R. Phelan Jr., P.M. Vlahovska, S.D. Hudson, Soft Matter 7, 7797 (2011)

    ADS  Article  Google Scholar 

  70. 70

    O.S. Pak, J. Feng, H.A. Stone, J. Fluid. Mech. 753, 535 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  71. 71

    J.H. Ferziger, M. Perić, Computational methods for fluid dynamics, Vol. 3 (Springer, Berlin, 1996)

  72. 72

    R. Eymard, T. Gallouët, R. Herbin, Handb. Numer. Anal. 7, 713 (2000)

    Google Scholar 

  73. 73

    J.R. Baumgardner, P.O. Frederickson, SIAM J. Numer. Anal. 22, 1107 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  74. 74

    J.A. Pudykiewicz, J. Comput. Phys. 213, 358 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  75. 75

    N.J. Mottram, C.J. Newton, arXiv:1409.3542 (2014)

  76. 76

    L. Longa, H.R. Trebin, Phys. Rev. A 42, 3453 (1990)

    ADS  MathSciNet  Article  Google Scholar 

  77. 77

    P. Kaiser, W. Wiese, S. Hess, J. Non-Equil. Thermody. 17, 153 (1992)

    ADS  Article  Google Scholar 

  78. 78

    A.J. Bray, Adv. Phys. 51, 481 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  79. 79

    Y. Brenier, F. Otto, C. Seis, SIAM J. Math. Anal. 43, 114 (2011)

    MathSciNet  Article  Google Scholar 

  80. 80

    D.S. Felix Otto, Christian Seis, Commun. Math. Sci. 11, 441 (2013)

    MathSciNet  Article  Google Scholar 

  81. 81

    V. Lobaskin, D. Lobaskin, I. Kulić, Eur. Phys. J. ST 157, 149 (2008)

    Article  Google Scholar 

  82. 82

    P.S. Lovely, F. Dahlquist, J. Theor. Biol. 50, 477 (1975)

    Article  Google Scholar 

  83. 83

    M. Doi, S. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1986)

  84. 84

    S. Dukhin, G. Kretzschmar, R. Miller, Dynamics of Adsorption at Liquid Interfaces: Theory, Experiment, Application, Studies in Interface Science (Elsevier Science, 1995), ISBN 9780080530611

  85. 85

    J. Dhont, An Introduction to Dynamics of Colloids (Elsevier, 1996)

  86. 86

    K.A. Hawick, D.P. Playne, Int. J. Comput. Aided Engin. Technol. 2, 78 (2010)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Schmitt.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmitt, M., Stark, H. Active Brownian motion of emulsion droplets: Coarsening dynamics at the interface and rotational diffusion. Eur. Phys. J. E 39, 80 (2016). https://doi.org/10.1140/epje/i2016-16080-y

Download citation

Keywords

  • Flowing Matter: Interfacial phenomena