Skip to main content

Dimensionality matters in the collective behaviour of active emulsions

Abstract.

The behaviour of artificial microswimmers consisting of droplets of a mesogenic oil immersed in an aqueous surfactant solution depends qualitatively on the conditions of dimensional confinement; ranging from only transient aggregates in Hele-Shaw geometries to hexagonally packed, convection-driven clusters when sedimenting in an unconfined reservoir. We study the effects of varying the swimmer velocity, the height of the reservoir, and the buoyancy of the droplet swimmers. Two simple adjustments of the experimental setting lead to a suppression of clustering: either a decrease of the reservoir height below a certain value, or a match of the densities of droplets and surrounding phase, showing that the convection is the key mechanism for the clustering behaviour.

Graphical abstract

References

  1. 1

    M. Simon, B.C. Cho, F. Azam, Mar. Ecol. Prog. Ser. 86, 103 (1992)

    Article  Google Scholar 

  2. 2

    J.P. Descy, V. Gosselain, Hydrobiologia 289, 139 (1994)

    Article  Google Scholar 

  3. 3

    G. Hardin, Science 131, 1292 (1960)

    ADS  Article  Google Scholar 

  4. 4

    G.E. Hutchinson, Am. Nat. 95, 137 (1961)

    Article  Google Scholar 

  5. 5

    U. Sommer, J. Padisak, C.S. Reynolds, P. Juhasz-Nagy, Hydrobiologia 249, 1 (1993)

    Article  Google Scholar 

  6. 6

    J. Huisman, F.J. Weissing, Nature 402, 407 (1999)

    ADS  Article  Google Scholar 

  7. 7

    F. D'Ovidio, S. De Monte, S. Alvain, Y. Dandonneau, M. Lévy, Proc. Natl. Acad. Sci. U.S.A. 107, 18366 (2010)

    ADS  Article  Google Scholar 

  8. 8

    M. Scheffer, S. Rinaldi, J. Huisman, F.J. Weissing, Hydrobiologia 491, 9 (2003)

    Article  Google Scholar 

  9. 9

    T. Pedley, J. Kessler, Annu. Rev. Fluid Mech. 24, 313 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10

    N. Hill, T. Pedley, Fluid Dyn. Res. 37, 1 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11

    E. Guyon, J.P. Hulin, L. Petit, C.D. Mitescu, Physical Hydrodynamics, 2nd edition (Oxford University Press, 2015)

  12. 12

    H.H. Wensink, H. Löwen, J. Phys.: Condens. Matter 24, 464130 (2012)

    ADS  Google Scholar 

  13. 13

    J. Bialké, H. Löwen, T. Speck, EPL 103, 30008 (2013)

    ADS  Article  Google Scholar 

  14. 14

    A.M. Menzel, T. Ohta, H. Löwen, Phys. Rev. E 89, 022301 (2014)

    ADS  Article  Google Scholar 

  15. 15

    P. Cremer, H. Löwen, Phys. Rev. E 89, 022307 (2014)

    ADS  Article  Google Scholar 

  16. 16

    B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)

    ADS  Google Scholar 

  17. 17

    M. Leoni, T.B. Liverpool, Phys. Rev. Lett. 105, 238102 (2010)

    ADS  Article  Google Scholar 

  18. 18

    N. Desreumaux, N. Florent, E. Lauga, D. Bartolo, Eur. Phys. J. E 35, 68 (2012)

    Article  Google Scholar 

  19. 19

    A. Zöttl, H. Stark, Phys. Rev. Lett. 112, 118101 (2014)

    ADS  Article  Google Scholar 

  20. 20

    R. Matas-Navarro, R. Golestanian, T.B. Liverpool, S.M. Fielding, Phys. Rev. E 90, 032304 (2014)

    ADS  Article  Google Scholar 

  21. 21

    M. Leoni, T. Liverpool, Phys. Rev. Lett. 112, 148104 (2014)

    ADS  Article  Google Scholar 

  22. 22

    T. Ishikawa, T. Pedley, Phys. Rev. Lett. 100, 088103 (2008)

    ADS  Article  Google Scholar 

  23. 23

    J. Stenhammar, D. Marenduzzo, R.J. Allen, M.E. Cates, Soft Matter 10, 1489 (2014)

    ADS  Article  Google Scholar 

  24. 24

    J. Stenhammar, R. Wittkowski, D. Marenduzzo, M.E. Cates, Phys. Rev. Lett. 114, 018301 (2015)

    ADS  Article  Google Scholar 

  25. 25

    G.J. Li, A.M. Ardekani, Phys. Rev. E 90, 013010 (2014)

    ADS  Article  Google Scholar 

  26. 26

    F. Dos Santos, T. Ondarçuhu, Phys. Rev. Lett. 75, 2972 (1995)

    ADS  Article  Google Scholar 

  27. 27

    T. Ban, T. Kita, H. Tominaga, S. Akihisa, Chem. Lett. 37, 162 (2008)

    Article  Google Scholar 

  28. 28

    Y.J. Chen, Y. Nagamine, K. Yoshikawa, Phys. Rev. E 80, 016303 (2009)

    ADS  Article  Google Scholar 

  29. 29

    J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)

    ADS  Article  Google Scholar 

  30. 30

    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005)

    ADS  Article  Google Scholar 

  31. 31

    A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009)

    ADS  Article  Google Scholar 

  32. 32

    A. Snezhko, M. Belkin, I.S. Aranson, W.K. Kwok, Phys. Rev. Lett. 102, 118103 (2009)

    ADS  Article  Google Scholar 

  33. 33

    J. Howse, R. Jones, A. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    ADS  Article  Google Scholar 

  34. 34

    G. Volpe, I. Buttinoni, D. Vogt, H.J. Kümmerer, C. Bechinger, Soft Matter 7, 8810 (2011)

    ADS  Article  Google Scholar 

  35. 35

    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)

    ADS  Article  Google Scholar 

  36. 36

    B. ten Hagen, F. Kuemmel, R. Wittkowski, T. Daisuke, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)

    ADS  Article  Google Scholar 

  37. 37

    F. Kuemmel, P. Shabestari, C. Lozano, G. Volpe, C. Bechinger, Soft Matter 11, 6187 (2015)

    ADS  Article  Google Scholar 

  38. 38

    T. Toyota, H. Tsuha, K. Yamada, T. Katsuto, T. Ikegami, T. Sugawara, Chem. Lett. 35, 708 (2006)

    Article  Google Scholar 

  39. 39

    M.M. Hanczyc, T. Toyota, T. Ikegami, P. Norman, T. Sugawara, J. Am. Chem. Soc. 129, 9386 (2007)

    Article  Google Scholar 

  40. 40

    T. Toyota, N. Maru, M.M. Hanczyc, T. Ikegami, T. Sugawara, J. Am. Chem. Soc. 131, 5012 (2009)

    Article  Google Scholar 

  41. 41

    S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13, 73021 (2011)

    Article  Google Scholar 

  42. 42

    T. Banno, R. Kuroha, T. Toyota, Langmuir 28, 1190 (2012)

    Article  Google Scholar 

  43. 43

    T. Ban, T. Yamagami, H. Nakata, O. Yasunori, Langmuir 29, 2554 (2013)

    Article  Google Scholar 

  44. 44

    T. Banno, S. Miura, R. Kuroha, T. Toyota, Langmuir 29, 7689 (2013)

    Article  Google Scholar 

  45. 45

    S. Herminghaus, C.C. Maass, C. Krüger, S. Thutupalli, L. Goehring, C. Bahr, Soft Matter 10, 7008 (2014)

    ADS  Article  Google Scholar 

  46. 46

    Z. Izri, M.N. van der Linden, S. Michelin, O. Dauchot, Phys. Rev. Lett. 113, 248302 (2014)

    ADS  Article  Google Scholar 

  47. 47

    C.C. Maass, C. Krüger, S. Herminghaus, C. Bahr, Annu. Rev. Conden. Matter Phys. 7, 171 (2016)

    ADS  Article  Google Scholar 

  48. 48

    K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, C. Bahr, Langmuir 28, 12426 (2012)

    Article  Google Scholar 

  49. 49

    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Prentice Hall, NJ, 1965)

  50. 50

    I.O. Götze, G. Gompper, Phys. Rev. E 82, 041921 (2010)

    ADS  Article  Google Scholar 

  51. 51

    N. Aguillon, A. Decoene, B. Fabrèges, B. Maury, B. Semin, ESAIM: Proc. 38, 36 (2013)

    Article  Google Scholar 

  52. 52

    A.P. Petroff, X.L. Wu, A. Libchaber, Phys. Rev. Lett. 114, 158102 (2015)

    ADS  Article  Google Scholar 

  53. 53

    V.B. Putz, J. Dunkel, J.M. Yeomans, Chem. Phys. 375, 557 (2010)

    ADS  Article  Google Scholar 

  54. 54

    C. Tung, J. Harder, C. Valeriani, A. Cacciuto, Soft Matter 12, 555 (2016)

    ADS  Article  Google Scholar 

  55. 55

    J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M.E. Cates, D. Marenduzzo, A.N. Morozov, W.C. Poon, Proc. Natl. Acad. Sci. U.S.A. 109, 4052 (2012)

    Article  Google Scholar 

Download references

Open access funding provided by Max Planck Society (or associated institution if applicable).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carsten Krüger.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krüger, C., Bahr, C., Herminghaus, S. et al. Dimensionality matters in the collective behaviour of active emulsions. Eur. Phys. J. E 39, 64 (2016). https://doi.org/10.1140/epje/i2016-16064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16064-y

Keywords

  • Topical Issue: Nonequilibrium Collective Dynamics in Condensed and Biological Matter