Skip to main content
Log in

Mathematical modeling of pattern formation caused by drying of colloidal film under a mask

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In our model, we simulate an experiment (D.J. Harris, H. Hu, J.C. Conrad, J.A. Lewis, Patterning colloidal films via evaporative lithography, Phys. Rev. Lett. 98, 148301 (2007)). A thin colloidal sessile droplet is allowed to dry out on a horizontal hydrophilic surface. A mask just above the droplet predominantly allows evaporation from the droplet free surface directly beneath the holes in the mask. We consider one special case, when the holes in the mask are arranged so that the system has rotational symmetry of order m . We use a speculative evaporative flux to mimic the real system. Advection, diffusion, and sedimentation are taken into account. FlexPDE is utilized to solve an advection-diffusion equation using the finite element method. The simulation demonstrates that the colloidal particles accumulate below the holes as the solvent evaporates. Diffusion can reduce this accumulation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Routh, Rep. Prog. Phys. 76, 046603 (2013) DOI:10.1088/0034-4885/76/4/046603

    Article  ADS  Google Scholar 

  2. R.G. Larson, AIChE J. 60, 1538 (2014) DOI:10.1002/aic.14338

    Article  Google Scholar 

  3. K. Sefiane, Adv. Colloid Interface Sci. 206, 372 (2014) DOI:10.1016/j.cis.2013.05.002

    Article  Google Scholar 

  4. X. Zhong, A. Crivoi, F. Duan, Adv. Colloid Interface Sci. 217, 13 (2015) DOI:10.1016/j.cis.2014.12.003

    Article  Google Scholar 

  5. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997) DOI:10.1038/39827

    Article  ADS  Google Scholar 

  6. Z. Lin (Editor), Evaporative Self-assembly of Ordered Complex Structures (World Scientific Publishing Company, 2010)

  7. D.J. Harris, H. Hu, J.C. Conrad, J.A. Lewis, Phys. Rev. Lett. 98, 148301 (2007) DOI:10.1103/PhysRevLett.98.148301

    Article  ADS  Google Scholar 

  8. D.J. Harris, J.A. Lewis, Langmuir 24, 3681 (2008) DOI:10.1021/la8000637

    Article  Google Scholar 

  9. D.J. Harris, J.C. Conrad, J.A. Lewis, Philos. Trans. R. Soc., A 367, 5157 (2009) DOI:10.1098/rsta.2009.0157

    Article  ADS  Google Scholar 

  10. M. Fujita, O. Koike, Y. Yamaguchi, J. Comput. Phys. 281, 421 (2015) DOI:10.1016/j.jcp.2014.10.042

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Crivoi, F. Duan, Sci. Rep. 4, 1 (2014) DOI:10.1038/srep04310

    Article  Google Scholar 

  12. H.S. Kim, S. Park, F. Hagelberg, J. Nanopart. Res. 13, 59 (2010) DOI:10.1007/s11051-010-0062-8

    Article  Google Scholar 

  13. W. Chen, J. Koplik, I. Kretzschmar, Phys. Rev. E 87, 052404 (2013) DOI:10.1103/PhysRevE.87.052404

    Article  ADS  Google Scholar 

  14. A.J. Petsi, A.N. Kalarakis, V.N. Burganos, Chem. Engin. Sci. 65, 2978 (2010) DOI:10.1016/j.ces.2010.01.028

    Article  Google Scholar 

  15. M.J. Robbins, A.J. Archer, U. Thiele, J. Phys.: Condens. Matter 23, 415102 (2011) DOI:10.1088/0953-8984/23/41/415102

    Google Scholar 

  16. R. Bhardwaj, X. Fang, D. Attinger, New J. Phys. 11, 075020 (2009) DOI:10.1088/1367-2630/11/7/075020

    Article  ADS  Google Scholar 

  17. F. Parisse, C. Allain, J. Phys. II 6, 1111 (1996) DOI:10.1051/jp2:1996119

    Google Scholar 

  18. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E 62, 756 (2000) DOI:10.1103/PhysRevE.62.756

    Article  ADS  Google Scholar 

  19. Y.O. Popov, Phys. Rev. E 71, 036313 (2005) DOI:10.1103/PhysRevE.71.036313

    Article  ADS  Google Scholar 

  20. N.I. Lebovka, V.A. Gigiberiya, O.S. Lytvyn, Yu.Yu. Tarasevich, I.V. Vodolazskaya, O.P. Bondarenko, Colloids Surf. A 462, 52 (2014) DOI:10.1016/j.colsurfa.2014.08.014

    Article  Google Scholar 

  21. E. Widjaja, M. Harris, AIChE J. 54, 2250 (2008) DOI:10.1002/aic.11558

    Article  Google Scholar 

  22. T. Okuzono, M. Kobayashi, M. Doi, Phys. Rev. E 80, 021603 (2009) DOI:10.1103/PhysRevE.80.021603

    Article  ADS  Google Scholar 

  23. K.L. Maki, S. Kumar, Langmuir 27, 11347 (2011) DOI:10.1021/la202088s

    Article  Google Scholar 

  24. Yu.Yu. Tarasevich, I.V. Vodolazskaya, O.P. Bondarenko, Colloids Surf. A 432, 99 (2013) DOI:10.1016/j.colsurfa.2013.04.069

    Article  Google Scholar 

  25. A.D. Eales, A.F. Routh, N. Dartnell, G. Simon, AIChE J. 61, 1759 (2015) DOI:10.1002/aic.14777

    Article  Google Scholar 

  26. P. Lebedev-Stepanov, R. Kadushnikov, S. Molchanov, A. Ivanov, V. Mitrokhin, K. Vlasov, N. Rubin, G. Yurasik, V. Nazarov, M. Alfimov, Nanotechnol. Russia 8, 137 (2013) DOI:10.1134/S1995078013020110

    Article  Google Scholar 

  27. F. Shao, T. Huynh, A. Somers, B. Liu, J. Fu, M. Muradoglu, T.W. Ng, Physica B 441, 21 (2014) DOI:10.1016/j.physb.2014.01.020

    Article  ADS  Google Scholar 

  28. A.G. Marín, H. Gelderblom, D. Lohse, J.H. Snoeijer, Phys. Rev. Lett. 107, 085502 (2011) DOI:10.1103/PhysRevLett.107.085502

    Article  ADS  Google Scholar 

  29. P.J. Yunker, T. Still, M.A. Lohr, A.G. Yodh, Nature 476, 308 (2011) DOI:10.1038/nature10344

    Article  ADS  Google Scholar 

  30. Y. Hamamoto, J.R.E. Christy, K. Sefiane, Phys. Rev. E 83, 051602 (2011) DOI:10.1103/PhysRevE.83.051602

    Article  ADS  Google Scholar 

  31. G. Huber, Physics 4, 65 (2011) DOI:10.1103/Physics.4.65

    Article  Google Scholar 

  32. A.G. Marín, H. Gelderblom, D. Lohse, J.H. Snoeijer, Phys. Fluids 23, 091111 (2011) DOI:10.1063/1.3640018

    Article  ADS  Google Scholar 

  33. D.M. Anderson, S.H. Davis, Phys. Fluids 7, 248 (1995) DOI:10.1063/1.868623

    Article  ADS  Google Scholar 

  34. B.J. Fischer, Langmuir 18, 60 (2002) DOI:10.1021/la015518a

    Article  Google Scholar 

  35. K. Ozawa, E. Nishitani, M. Doi, Jpn. J. Appl. Phys. 44, 4229 (2005) DOI:10.1143/JJAP.44.4229

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Yu. Tarasevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasevich, Y., Vodolazskaya, I. & Sakharova, L. Mathematical modeling of pattern formation caused by drying of colloidal film under a mask. Eur. Phys. J. E 39, 26 (2016). https://doi.org/10.1140/epje/i2016-16026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16026-5

Keywords

Navigation