Abstract
We propose a novel method for producing unequal sized droplets through breakup of droplets. This method does not have the disadvantages of the available methods and also reduces the dependence of the droplets volume ratio on the inlet velocity of the system by up to 26 percent. The employed method for investigating the proposed system relies on 3D numerical simulation using the VOF algorithm and the results have been obtained with various valve ratios for both the micro- and nanoscale. The results indicate that the droplet length during the breakup process increases linearly with time. The droplet length at the nanoscale is smaller than that at the micro scale. It has been shown that the maximum local capillary number in this system is 2.5 times the average capillary number. Therefore one can use the analytical theories based on the low capillary number assumptions to investigate the method.
Graphical abstract

This is a preview of subscription content, access via your institution.
References
E.A.G. Jamie, R.P.A. Dullens, D.G.A.L. Aarts, J. Phys.: Condens. Matter 24, 284120 (2012).
A. Moosavi, M. Rauscher, S. Dietrich, J. Phys.: Condens. Matter 21, 464120 (2009) (Special issue).
L. Bacri, F.B. Wyart, Eur. Phys. J. E 3, 87 (2000).
S. Moulinet, D. Bartolo, Eur. Phys. J. E 24, 251 (2007).
Z. Yao, M.J. Bowick, Eur. Phys. J. E 34, 32 (2011).
Y.S. Shin, H.C. Lim, Eur. Phys. J. E 34, 74 (2014).
D.A. Hoang, L.M. Portela, C.R. Kleijn, M.T. Kreutzer, V.V. Steijn, J. Fluid Mech. 717, R4 (2013).
T. Fu, Y. Ma, H.Z. Li, AIChE J. 60, 1920 (2014).
J. Wang, D. Yu, Microfluidics and Nanofluidics, Accepted Paper, DOI:10.1007/s10404-014-1458-z (2014).
S.E. Mhatre, S.D. Deshmukh, R.M. Thaokar, Eur. Phys. J. E 35, 39 (2012).
S. Harada, T. Mitsui, K. Sato, Eur. Phys. J. E 35, 1 (2012).
S.H. Tan, S.M. Sohel Murshed, N.T. Nguyen, T.N. Wong, L. Yobas, J. Phys. D: Appl. Phys. 41, 165501 (2008).
J.H. Chang, J.J. Pak, J. Adhes. Sci. Technol. 26, 2105 (2012).
B. Han, H. Meng, J. Power Sources 217, 268 (2012).
H. Liu, Y. Zhang, J. Appl. Phys. 106, 034906 (2009).
G.F. Christopher, N.N. Noharuddin, J.A. Taylor, L.A. Shelley, Phys. Rev. E 78, 036317 (2008).
J. Tice, H. Song, A. Lyon, R. Ismagilov, Langmuir 19, 9127 (2003).
A.K. Kulshreshtha, N. Onkar Singh, G. Michael Wall, Pharmaceutical Suspensions: From Formulation Development to Manufacturing (Springer Science & Business Media, 2009) Section 1.2.2.
A. Bedram, A. Moosavi, J. Appl. Fluid Mech. 6, 81 (2013).
S. Afkhami, A.M. Leshansky, Y. Renardy, Phys. Fluids 23, 022002 (2011).
D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Phys. Rev. Lett. 92, 054503 (2004).
A. Bedram, A. Moosavi, Eur. Phys. J. E 34, 78 (2011).
B.R. Sehgal, R.R. Nourgaliev, T.N. Dinh, Progr. Nucl. Energy 34, 471 (1999).
J.H. Choi, S.K. Lee, J.M. Lim, S.M. Yang, G.R. Yi, Lab Chip 10, 456 (2010).
T.H. Ting, Y.F. Yap, N.T. Nguyen, T.N. Wong, J.C.K. Chai, L. Yobas, Appl. Phys. Lett. 89, 234101 (2006).
A. Bedram, A.E. Darabi, A. Moosavi, S. Kazemzade, ASME J. Fluids Eng. 137, 031202 (2014).
A. Bedram, A. Moosavi, S. Kazemzadeh, Phys. Rev. E 91, 053012 (2015).
R. Maniero, O. Masbernat, E. Climent, F. Risso, Int. J. Multiphase Flow 42, 1 (2012).
T. Lemenand, P. Dupont, D.D. Valle, H. Peerhossaini, Chem. Engin. Res. Design 91, 2587 (2013).
F. Ravelet, C. Colin, F. Risso, Phys. Fluids 23, 103301 (2011).
F. Abbassi-Sourki, B. Mosto, M.A. Huneault, Rheol. Acta 51, 111 (2012).
Y.K. Wei, Y. Qian, H. Xu, Comput. Multiphase Flows 4, 111 (2012).
M. Desse, J. Mitchell, B. Wolf, T. Budtova, Food Hydrocoll. 25, 495 (2011).
M.S. Korlie, A. Mukherjee, B.G. Nita, J.G. Stevens, A.D. Trubatch, P. Yecko, J. Phys.: Condens. Matter 20, 204143 (2008).
G.F. Christopher, J. Bergstein, N.B. End, M. Poon, C. Nguyen, S.L. Anna, Lab Chip 9, 1102 (2009).
J. Nie, R.T. Kennedy, Anal. Chem. 82, 7852 (2010).
W. Engl, M. Roche, A. Colin, P. Panizza, A. Ajdari, Phys. Rev. Lett. 95, 208304 (2005).
I. Lee, Y. Yoo, Z. Cheng, H.K. Jeong, Adv. Funct. Mater. 18, 4014 (2008).
W. Yining, F. Taotao, C. Zhu, Y. Lu, Y. Ma, H.Z. Li, Microfluid Nanofluid 13, 723 (2012).
V. Cristini, J. Blawzdziewicz, M. Loewenberg, Phys. Fluids 10, 1781 (1998).
H.N. Yoshikawa, F. Zoueshtiagh, H. Caps, P. Kurowski, P. Petitjeans, Eur. Phys. J. E 31, 191 (2010).
A.J. Griggs, A.Z. Zinchenko, R.H. Davis, Int. J. Multiphase Flow 34, 408 (2008).
Y.F. Yap, S.H. Tan, N.T. Nguyen, S.M. Sohel Murshed, T.N. Wong, L. Yobas, J. Phys. D: Appl. Phys. 42, 065503 (2009).
F.P. Bretherton, J. Fluid Mech. 166, 10 (1961).
A.M. Leshansky, L.M. Pismen, Phys. Fluids 21, 023303 (2009).
J.D. Crounse, K.A. McKinney, A.J. Kwan, P.O. Wennberg, Anal. Chem. 78, 6726 (2006).
N. Wongprasert, M.D. Symans, ASCE J. Structural Eng. 131, 867 (2005).
S.S. Parmar, S.W. Benson, J. Phys. Chem. 92, 2652 (1988).
D.L. Youngs, Numer. Methods Fluid Dyn. 24, 273 (1982).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bedram, A., Moosavi, A. & Kazemzadeh Hannani, S. A novel method for producing unequal sized droplets in micro- and nanofluidic channels. Eur. Phys. J. E 38, 96 (2015). https://doi.org/10.1140/epje/i2015-15096-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2015-15096-1