Skip to main content

Minimal model for transient swimming in a liquid crystal

Abstract

When a microorganism begins swimming from rest in a Newtonian fluid such as water, it rapidly attains its steady-state swimming speed since changes in the velocity field spread quickly when the Reynolds number is small. However, swimming microorganisms are commonly found or studied in complex fluids. Because these fluids have long relaxation times, the time to attain the steady-state swimming speed can also be long. In this article we study the swimming startup problem in the simplest liquid crystalline fluid: a two-dimensional hexatic liquid crystal film. We study the dependence of startup time on anchoring strength and Ericksen number, which is the ratio of viscous to elastic stresses. For strong anchoring, the fluid flow starts up immediately but the liquid crystal field and swimming velocity attain their sinusoidal steady-state values after a time proportional to the relaxation time of the liquid crystal. When the Ericksen number is high, the behavior is the same as in the strong-anchoring case for any anchoring strength. We also find that the startup time increases with the ratio of the rotational viscosity to the shear viscosity, and then ultimately saturates once the rotational viscosity is much greater than the shear viscosity.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009).

    MathSciNet  Article  ADS  Google Scholar 

  2. D.A. Gagnon, N.C. Keim, P.E. Arratia, J. Fluid Mech. 758, R3 (2014).

    Article  ADS  Google Scholar 

  3. M. Molaei, M. Barry, R. Stocker, J. Sheng, Phys. Rev. Lett. 113, 068103 (2014).

    Article  ADS  Google Scholar 

  4. J. Li, S. Sattayasamitsathit, R. Dong, W. Gao, R. Tam, X. Feng, S. Ai, J. Wang, Nanoscale 6, 9415 (2014).

    Article  ADS  Google Scholar 

  5. B.J. Williams, S.V. Anand, J. Rajagopalan, M.T.A. Saif, Nat. Commun. 5, 3081 (2014).

    ADS  Google Scholar 

  6. Y. Magariyama, S. Sugiyama, K. Muramoto, I. Kawagishi, Y. Imae, S. Kudo, Biophys. J. 69, 2154 (1995).

    Article  ADS  Google Scholar 

  7. H.C. Berg, Ann. Rev. Biochem. 72, 19 (2003).

    Article  Google Scholar 

  8. R. Kamiya, E. Hasegawa, Exp. Cell Res. 173, 299 (1987).

    Article  Google Scholar 

  9. B.H. Gibbons, I.R. Gibbons, J. Cell Biol. 54, 75 (1972).

    Article  Google Scholar 

  10. D.J. Smith, E.A. Gaffney, H. Gadêlha, N. Kapur, J.C. Kirkman-Brown, Cell Mot. Cytos. 66, 220 (2009).

    Article  Google Scholar 

  11. X.N. Shen, P.E. Arratia, Phys. Rev. Lett. 106, 208101 (2011).

    Article  ADS  Google Scholar 

  12. O.S. Pak, E. Lauga, Proc. Roy. Soc. 466, 107 (2010).

    MathSciNet  Article  ADS  MATH  Google Scholar 

  13. B. Liu, T.R. Powers, K.S. Breuer, Proc. Natl. Acad. Sci. U.S.A. 108, 19516 (2011).

    Article  ADS  Google Scholar 

  14. A. Gilboa, A. Silberberg, Biorheology 13, 59 (1976).

    Google Scholar 

  15. S.K. Lai, Y.Y. Wang, D. Wirtz, J. Hanes, Adv. Drug Deliv. Rev. 6, 86 (2009).

    Article  Google Scholar 

  16. G.J. Elfring, E. Lauga, Theory of locomotion through complex fluids, in Complex fluids in biological systems, edited by S.E. Spagnolie (Springer, Berlin, 2015).

  17. S. Zhou, A. Sokolov, O.D. Lavrentovich, I.S. Aranson, Proc. Natl. Acad. Sci. U.S.A. 111, 1265 (2014).

    Article  ADS  Google Scholar 

  18. P.C. Mushenheim, R.R. Trivedi, H.H. Tuson, D.B. Weibel, N.L. Abbott, Soft Matter 10, 88 (2014).

    Article  ADS  Google Scholar 

  19. M.S. Krieger, S.E. Spagnolie, T.R. Powers, arXiv:1507.00776 (2015).

  20. G.I. Taylor, Proc. R. Soc. Lond. Ser. A 209, 447 (1951).

    Article  ADS  MATH  Google Scholar 

  21. L. Xie, T. Altindal, S. Chattopadhyay, X.L. Wu, Proc. Natl. Acad. Sci. U.S.A. 108, 2246 (2011).

    Article  ADS  Google Scholar 

  22. S.F. Goldstein, J. Cell Biol. 80, 61 (1979).

    Article  Google Scholar 

  23. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1995) 2nd edition.

  24. M.S. Krieger, S.E. Spagnolie, T.R. Powers, Phys. Rev. E 90, 052503 (2014).

    Article  ADS  Google Scholar 

  25. L.D. Landau, E.M. Lifshitz, Theory of elasticity (Pergamon Press, Oxford, 1986) 3rd edition.

  26. R.G. Larson, The structure and rheology of complex fluids (Oxford University Press, New York, 1999).

  27. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc., New York, 1964).

  28. B. Davies, B. Martin, J. Comput. Phys. 33, 1 (1979).

    MathSciNet  Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madison S. Krieger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krieger, M.S., Dias, M.A. & Powers, T.R. Minimal model for transient swimming in a liquid crystal. Eur. Phys. J. E 38, 94 (2015). https://doi.org/10.1140/epje/i2015-15094-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15094-3

Keywords

  • Flowing Matter: Liquids and Complex Fluids