Skip to main content

Self-phoretic active particles interacting by diffusiophoresis: A numerical study of the collapsed state and dynamic clustering

Abstract

Self-phoretic active colloids move and orient along self-generated chemical gradients by diffusiophoresis, a mechanism reminiscent of bacterial chemotaxis. In combination with the activity of the colloids, this creates effective repulsive and attractive interactions between particles depending on the sign of the translational and rotational diffusiophoretic parameters. A delicate balance of these interactions causes dynamic clustering and for overall strong effective attraction the particles collapse to one single cluster. Using Langevin dynamics simulations, we extend the state diagram of our earlier work (Phys. Rev. Lett. 112, 238303 (2014)) to regions with translational phoretic repulsion. With increasing repulsive strength, the collapsed cluster first starts to fluctuate strongly, then oscillates between a compact form and a colloidal cloud, and ultimately the colloidal cloud becomes static. The oscillations disappear if the phoretic interactions within compact clusters are not screened. We also study dynamic clustering at larger area fractions by exploiting cluster size distributions and mean cluster sizes. In particular, we identify the dynamic clustering 2 state as a signature of phoretic interactions. We analyze fusion and fission rate functions to quantify the kinetics of cluster formation and identify them as local signatures of phoretic interactions, since they can be measured on single clusters.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013).

    Article  ADS  Google Scholar 

  2. 2.

    I.S. Aranson, C.R. Phys. 14, 518 (2013).

    Article  ADS  Google Scholar 

  3. 3.

    M.E. Cates, J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219 (2015).

    Article  ADS  Google Scholar 

  4. 4.

    J. Bialké, T. Speck, H. Löwen, J. Non-Cryst. Solids 407, 367 (2015).

    Article  ADS  Google Scholar 

  5. 5.

    J.L. Moran, J. Posner, J. Fluid Mech. 680, 31 (2011).

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    R. Golestanian, Phys. Rev. Lett. 108, 038303 (2012).

    Article  ADS  Google Scholar 

  7. 7.

    D. Saintillan, M.J. Shelley, C.R. Phys. 14, 497 (2013).

    Article  ADS  Google Scholar 

  8. 8.

    P.H. Colberg, S.Y. Reigh, B. Robertson, R. Kapral, Acc. Chem. Res. 47, 3504 (2014).

    Article  Google Scholar 

  9. 9.

    M.E. Cates, J. Tailleur, Phys. Rev. Lett. 100, 218103 (2008).

    Article  ADS  Google Scholar 

  10. 10.

    S. Henkes, Y. Fily, M.C. Marchetti, Phys. Rev. E 84, 040301 (2011).

    Article  ADS  Google Scholar 

  11. 11.

    G.S. Redner, M.F. Hagan, A. Baskaran, Phys. Rev. Lett. 110, 055701 (2013).

    Article  ADS  Google Scholar 

  12. 12.

    M.E. Cates, J. Tailleur, EPL 101, 20010 (2013).

    Article  ADS  Google Scholar 

  13. 13.

    J. Bialke, H. Löwen, T. Speck, EPL 103, 30008 (2013).

    Article  ADS  Google Scholar 

  14. 14.

    T. Speck, J. Bialke, A.M. Menzel, H. Löwen, Phys. Rev. Lett. 112, 218304 (2014).

    Article  ADS  Google Scholar 

  15. 15.

    A. Zöttl, H. Stark, Phys. Rev. Lett. 112, 118101 (2014).

    Article  ADS  Google Scholar 

  16. 16.

    V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007).

    Article  ADS  Google Scholar 

  17. 17.

    J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013).

    Article  ADS  Google Scholar 

  18. 18.

    R.W. Nash, R. Adhikari, J. Tailleur, M.E. Cates, Phys. Rev. Lett. 104, 258101 (2010).

    Article  ADS  Google Scholar 

  19. 19.

    M. Hennes, K. Wolff, H. Stark, Phys. Rev. Lett. 112, 238104 (2014).

    Article  ADS  Google Scholar 

  20. 20.

    W.M. Durham, J.O. Kessler, R. Stocker, Science 323, 1067 (2009).

    Article  ADS  Google Scholar 

  21. 21.

    A. Zöttl, H. Stark, Phys. Rev. Lett. 108, 218104 (2012).

    Article  ADS  Google Scholar 

  22. 22.

    X. Garcia, S. Rafaï, P. Peyla, Phys. Rev. Lett. 110, 138106 (2013).

    Article  ADS  Google Scholar 

  23. 23.

    A. Zöttl, H. Stark, Eur. Phys. J. E 36, 4 (2013).

    Article  ADS  Google Scholar 

  24. 24.

    J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010).

    Article  ADS  Google Scholar 

  25. 25.

    M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011).

    Article  ADS  Google Scholar 

  26. 26.

    K. Wolff, A.M. Hahn, H. Stark, Phys. Rev. Lett. 112, 128304 (2014).

    Article  Google Scholar 

  27. 27.

    I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012).

    Article  ADS  Google Scholar 

  28. 28.

    O. Pohl, H. Stark, Phys. Rev. Lett. 112, 238303 (2014).

    Article  ADS  Google Scholar 

  29. 29.

    A. Attanasi, A. Cavagna, L.D. Castello, I. Giardina, T. Grigera, A. Jelić, S. Melillo, L. Parisi, O. Pohl, E. Shen et al., Nat. Phys. 10, 691 (2014).

    Article  Google Scholar 

  30. 30.

    Q. Liu, A. Doelman, V. Rottschäfer, M. de Jager, P.M.J. Herman, M. Rietkerk, J. van de Koppel, Proc. Natl. Acad. Sci. U.S.A. 110, 11905 (2013).

    Article  ADS  Google Scholar 

  31. 31.

    R.C. Gerum, B. Fabry, C. Metzner, M. Beaulieu, A. Ancel, D.P. Zitterbart, New. J. Phys. 15, 125022 (2013).

    Article  ADS  Google Scholar 

  32. 32.

    A. Attanasi, A. Cavagna, L.D. Castello, I. Giardina, S. Melillo, L. Parisi, O. Pohl, B. Rossaro, E. Shen, E. Silvestri et al., Phys. Rev. Lett. 113, 238102 (2014).

    Article  ADS  Google Scholar 

  33. 33.

    H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012).

    Article  ADS  Google Scholar 

  34. 34.

    H.C. Berg, E. coli in Motion (Springer, New York, 2004).

  35. 35.

    D.P. Häderi, A. Rosumi, J. Schäfer, R. Hemmersbach, J. Plant Physiol. 146, 474 (1995).

    Article  Google Scholar 

  36. 36.

    B.T. Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014).

    Article  Google Scholar 

  37. 37.

    K. Maeda, Y. Imae, J.I. Shioi, F. Oosawa, J. Bacteriol. 127, 1039 (1976).

    Google Scholar 

  38. 38.

    J.L. Anderson, Ann. Rev. Fluid Mech. 21, 61 (1989).

    Article  ADS  Google Scholar 

  39. 39.

    J.A. Cohen, R. Golestanian, Phys. Rev. Lett. 112, 068302 (2014).

    Article  ADS  Google Scholar 

  40. 40.

    M. Braun, A. Würger, F. Cichos, Phys. Chem. Chem. Phys. 16, 15207 (2014).

    Article  Google Scholar 

  41. 41.

    T. Bickel, G. Zecua, A. Würger, Phys. Rev. E 89, 050303 (2014).

    Article  ADS  Google Scholar 

  42. 42.

    S. Saha, R. Golestanian, S. Ramaswamy, Phys. Rev. E 89, 062316 (2014).

    Article  ADS  Google Scholar 

  43. 43.

    F. Ginot, I. Theurkauff, D. Levis, C. Ybert, L. Bocquet, L. Berthier, C. Cottin-Bizonne, Phys. Rev. X 5, 011004 (2015).

    Google Scholar 

  44. 44.

    J. Taktikos, V. Zaburdaev, H. Stark, Phys. Rev. E 85, 051901 (2012).

    Article  ADS  Google Scholar 

  45. 45.

    I. Buttinoni, J. Bialke, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013).

    Article  ADS  Google Scholar 

  46. 46.

    L.F. Valadares, Y.G. Tao, N.S. Zacharia, V. Kitaev, F. Galembeck, R. Kapral, G.A. Ozin, Small 6, 565 (2010).

    Article  Google Scholar 

  47. 47.

    P. de Buyl, R. Kapral, Nanoscale 5, 1337 (2013).

    Article  ADS  Google Scholar 

  48. 48.

    K. Schaar, A. Zöttl, H. Stark, Phys. Rev. Lett. 115, 038101 (2015).

    Article  ADS  Google Scholar 

  49. 49.

    E.F. Keller, L.A. Segel, J. Theor. Biol. 26, 399 (1970).

    Article  MATH  Google Scholar 

  50. 50.

    H. Masoud, M.J. Shelley, Phys. Rev. Lett. 112, 128304 (2014).

    Article  ADS  Google Scholar 

  51. 51.

    O. Ciftja, I. Hysi, Appl. Math. Lett. 24, 1919 (2011).

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    D. Levis, L. Berthier, Phys. Rev. E 89, 062301 (2014).

    Article  ADS  Google Scholar 

  53. 53.

    S. Gueron, S.A. Levin, Math. Biosci. 128, 243 (1995).

    Article  MATH  Google Scholar 

  54. 54.

    F. Peruani, J. Starruß, V. Jakovljevic, L.S. Andersen, A. Deutsch, M. Bär, Phys. Rev. Lett. 108, 098102 (2012).

    Article  ADS  Google Scholar 

  55. 55.

    H.S. Niwa, J. Theor. Biol. 224, 451 (2003).

    MathSciNet  Article  Google Scholar 

  56. 56.

    F. Peruani, A. Deutsch, M. Bär, Phys. Rev. E 74, 030904 (2006).

    Article  ADS  Google Scholar 

  57. 57.

    F. Peruani, M. Bär, New J. Phys. 15, 065009 (2013).

    MathSciNet  Article  ADS  Google Scholar 

  58. 58.

    M. Ibele, T.E. Mallouk, A. Sen, ACS Nano 48, 3308 (2009).

    Google Scholar 

  59. 59.

    M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, ACS Nano 4, 4845 (2010).

    Article  Google Scholar 

  60. 60.

    S. Thakur, R. Kapral, Phys. Rev. E 85, 026121 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oliver Pohl.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pohl, O., Stark, H. Self-phoretic active particles interacting by diffusiophoresis: A numerical study of the collapsed state and dynamic clustering. Eur. Phys. J. E 38, 93 (2015). https://doi.org/10.1140/epje/i2015-15093-4

Download citation

Keywords

  • Soft Matter: Colloids and Nanoparticles