Computational study of remodeling in a nucleosomal array

  • Raoul D. Schram
  • Henrike Klinker
  • Peter B. Becker
  • Helmut Schiessel
Regular Article

Abstract

Chromatin remodeling complexes utilize the energy of ATP hydrolysis to change the packing state of chromatin, e.g. by catalysing the sliding of nucleosomes along DNA. Here we present simple models to describe experimental data of changes in DNA accessibility along a synthetic, repetitive array of nucleosomes during remodeling by the ACF enzyme or its isolated ATPase subunit, ISWI. We find substantial qualitative differences between the remodeling activities of ISWI and ACF. To understand better the observed behavior for the ACF remodeler, we study more microscopic models of nucleosomal arrays.

Graphical abstract

Keywords

Living systems: Biological Matter 

References

  1. 1.
    K. Luger, A.W. Mäder, R.K. Richmond, D.F. Sargent, T.J. Richmond, Nature 389, 251 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    R. Blossey, H. Schiessel, FEBS J. 278, 3619 (2011).CrossRefGoogle Scholar
  3. 3.
    K.J. Polach, J. Widom, J. Mol. Biol. 254, 130 (1995).CrossRefGoogle Scholar
  4. 4.
    J.D. Anderson, J. Widom, J. Mol. Biol. 296, 979 (2000).CrossRefGoogle Scholar
  5. 5.
    J.D. Anderson, P.T. Lowary, J. Widom, J. Mol. Biol. 307, 977 (2001).CrossRefGoogle Scholar
  6. 6.
    G. Li, M. Levitus, C. Bustamante, J. Widom, Nat. Struct. Mol. Biol. 12, 46 (2005).CrossRefGoogle Scholar
  7. 7.
    L. Kelbauskas, N. Chan, R. Bash, J. Yodh, N. Woodbury, D. Lohr, Biochemistry 46, 2239 (2007).CrossRefGoogle Scholar
  8. 8.
    A. Gansen, A. Valeri, F. Hauger, S. Felekyan, S. Kalinin, K. Toth, J. Langowski, C.A.M. Seidel, Proc. Natl. Acad. Sci. U.S.A. 106, 15308 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    W.J.A. Koopmans, R. Buning, T. Schmidt, J. van Noort, Biophys. J. 97, 195 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    R. Prinsen, H. Schiessel, Biochimie 92, 1722 (2010).CrossRefGoogle Scholar
  11. 11.
    H.S. Tims, K. Gurunathan, M. Levitus, J. Widom, J. Mol. Biol. 411, 430 (2011).CrossRefGoogle Scholar
  12. 12.
    I. Jimenez-Useche, C. Yuan, Biophys. J. 103, 2502 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    S. Pennings, G. Meersseman, E.M. Bradbury, J. Mol. Biol. 220, 101 (1991).CrossRefGoogle Scholar
  14. 14.
    G. Meersseman, S. Pennings, E.M. Bradbury, EMBO J. 11, 2951 (1992).Google Scholar
  15. 15.
    S. Pennings, G. Meersseman, E.M. Bradbury, Proc. Natl. Acad. Sci. U.S.A. 91, 10275 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    A. Flaus, T.J. Richmond, J. Mol. Biol. 275, 427 (1998).CrossRefGoogle Scholar
  17. 17.
    J.M. Gottesfeld, J.M. Belitsky, C. Melander, P.B. Dervan, K. Luger, J. Mol. Biol. 321, 249 (2002).CrossRefGoogle Scholar
  18. 18.
    S. Pisano, E. Marchioni, A. Galati, R. Mechelli, M. Savino, S. Cacchione, J. Mol. Biol. 369, 1153 (2007).CrossRefGoogle Scholar
  19. 19.
    A. Flaus, T. Owen-Hughes, Biopolymers 68, 563 (2003).CrossRefGoogle Scholar
  20. 20.
    H. Schiessel, J. Phys.: Condens. Matter 15, R699 (2003).ADSGoogle Scholar
  21. 21.
    H. Schiessel, J. Widom, R.F. Bruinsma, W.M. Gelbart, Phys. Rev. Lett. 86, 4414 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    I.M. Kulić, H. Schiessel, Biophys. J. 84, 3197 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    I.M. Kulić, H. Schiessel, Phys. Rev. Lett. 91, 148103 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    F. Mohammad-Rafiee, I.M. Kulić, H. Schiessel, J. Mol. Biol. 344, 47 (2004).CrossRefGoogle Scholar
  25. 25.
    A. Fathizadeh, A.B. Besya, M.R. Ejtehadi, H. Schiessel, Eur. Phys. J. E 36, 21 (2013).CrossRefGoogle Scholar
  26. 26.
    A. Flaus, D.M.A. Martin, G.J. Barton, T. Owen-Hughes, Nucl. Acids Res. 34, 2887 (2006).CrossRefGoogle Scholar
  27. 27.
    C.R. Clapier, B.R. Cairns, Annu. Rev. Biochem. 78, 273 (2009).CrossRefGoogle Scholar
  28. 28.
    A.E. Leschziner, Curr. Opin. Struct. Biol. 21, 709 (2011).CrossRefGoogle Scholar
  29. 29.
    G.J. Narlikar, R. Sundaramoorthy, T. Owen-Hughes, Cell 154, 490 (2013).CrossRefGoogle Scholar
  30. 30.
    P.D. Varga-Weisz, M. Wilm, E. Bonte, K. Dumas, M. Mann, P.B. Becker, Nature 388, 598 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    J.G. Yang, T.S. Madrid, E. Sevastopoulos, G.J. Narlikar, Nat. Struct. Mol. Biol. 13, 1078 (2006).CrossRefGoogle Scholar
  32. 32.
    L.R. Racki, J.G. Yang, N. Naber, P.D. Partensky, A. Acevedo, T.J. Purcell, R. Cooke, Y. Cheng, G.J. Narlikar, Nature 462, 1016 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    T.R. Blosser, J.G. Yang, M.D. Stone, G.J. Narlikar, X. Zhyang, Nature 462, 1022 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    S.E. Torigoe, D.L. Urwin, H. Ishii, D.E. Smith, J.T. Kadonaga, Mol. Cell 43, 638 (2011).CrossRefGoogle Scholar
  35. 35.
    A.-M. Florescu, H. Schiessel, R. Blossey, Phys. Rev. Lett. 109, 118103 (2012).ADSCrossRefGoogle Scholar
  36. 36.
    P. Korber, P.B. Becker, Essays Biochem. 58, 63 (2010).CrossRefGoogle Scholar
  37. 37.
    G. Lanzani, H. Schiessel, EPL 97, 38002 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    V.K. Maier, M. Chioda, D. Rhodes, P.B. Becker, EMBO J. 27, 817 (2008).CrossRefGoogle Scholar
  39. 39.
    H. Klinker, F. Mueller-Planitz, R. Yang, I. Forné, C.-F. Liu, L. Nordenskiöld, P.B. Becker, PLoS ONE 9, e88411 (2014).ADSCrossRefGoogle Scholar
  40. 40.
    A. Eberharter, S. Ferrari, G. Längst, T. Straub, A. Imhof, P. Varga-Weisz, M. Wilm, P.B. Becker, EMBO J. 20, 3781 (2001).CrossRefGoogle Scholar
  41. 41.
    X. He, H.-Y. Fan, G.J. Narlikar, R.E. Kingston, J. Biol. Chem. 281, 28636 (2006).CrossRefGoogle Scholar
  42. 42.
    P.T. Lowary, J. Widom, J. Mol. Biol. 276, 19 (1998).CrossRefGoogle Scholar
  43. 43.
    K.J. Polach, J. Widom, Methods Enzymol. 304, 278 (1999).CrossRefGoogle Scholar
  44. 44.
    P.D. Gregory, S. Barbaric, W. Hörz, Methods Mol Biol. 119, 417 (1999).Google Scholar
  45. 45.
    C. Logie, C.L. Peterson, EMBO J. 16, 6772 (1997).CrossRefGoogle Scholar
  46. 46.
    G.J. Narlikar, M.L. Phelan, R.E. Kingston, Mol. Cell 8, 1219 (2001).CrossRefGoogle Scholar
  47. 47.
    A.R. Khaki, C. Field, S. Malik, A. Niedziela-Majka, S.A. Leavitt, R. Wang, M. Hung, R. Sakowicz, K.M. Brendza, C.J. Fischer, J. Mol. Biol. 400, 345 (2010).CrossRefGoogle Scholar
  48. 48.
    G. Al-Ani, K. Briggs, S.S. Malik, M. Conner, Y. Azumi, C.J. Fischer, Biochemistry 53, 4334 (2014).CrossRefGoogle Scholar
  49. 49.
    R. Kornberg, L. Stryer, Nucl. Acids Res. 16, 6677 (1988).CrossRefGoogle Scholar
  50. 50.
    E. Segal, Y. Fondufe-Mittendorf, L. Chen, A.C. Thaström, Y. Field, I.K. Moore, J.-P.Z. Wang, J. Widom, Nature 442, 772 (2006).ADSCrossRefGoogle Scholar
  51. 51.
    P.D. Partensky, G.J. Narlikar, J. Mol. Biol. 391, 12 (2009).CrossRefGoogle Scholar
  52. 52.
    L. Tonks, Phys. Rev. 50, 955 (1936).ADSCrossRefGoogle Scholar
  53. 53.
    G. Chevereau, L. Palmeira, C. Thermes, A. Arneodo, C. Vaillant, Phys. Rev. Lett. 103, 188103 (2009).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Raoul D. Schram
    • 1
  • Henrike Klinker
    • 2
  • Peter B. Becker
    • 2
  • Helmut Schiessel
    • 1
  1. 1.Instituut-LorentzLeiden UniversityLeidenThe Netherlands
  2. 2.Adolf-Butenandt-Institute and Center for Integrated Protein Science MunichLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations