Advertisement

On the relevance of disorder in athermal amorphous materials under shear

  • Elisabeth AgoritsasEmail author
  • Eric Bertin
  • Kirsten Martens
  • Jean-Louis Barrat
Regular Article

Abstract

We show that, at least at a mean-field level, the effect of structural disorder in sheared amorphous media is very dissimilar depending on the thermal or athermal nature of their underlying dynamics. We first introduce a toy model, including explicitly two types of noise (thermal versus athermal). Within this interpretation framework, we argue that mean-field athermal dynamics can be accounted for by the so-called Hébraud-Lequeux (HL) model, in which the mechanical noise stems explicitly from the plastic activity in the sheared medium. Then, we show that the inclusion of structural disorder, by means of a distribution of yield energy barriers, has no qualitative effect in the HL model, while such a disorder is known to be one of the key ingredients leading kinematically to a finite macroscopic yield stress in other mean-field descriptions, such as the Soft-Glassy-Rheology model. We conclude that the statistical mechanisms at play in the emergence of a macroscopic yield stress, and a complex stationary dynamics at low shear rate, are different in thermal and athermal amorphous systems.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    L. Bragg, J.F. Nye, Proc. R. Soc. London A 190, 474 (1947).ADSCrossRefGoogle Scholar
  2. 2.
    A. Argon, Acta Metallurgica 27, 47 (1979).CrossRefGoogle Scholar
  3. 3.
    A. Argon, H. Kuo, Mater. Sci. Engin. 39, 101 (1979).CrossRefGoogle Scholar
  4. 4.
    H. Princen, J. Colloid Interface Sci. 91, 160 (1983).CrossRefzbMATHGoogle Scholar
  5. 5.
    P. Schall, D.A. Weitz, F. Spaepen, Science 318, 1895 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    S. Manneville, L. Bécu, A. Colin, Eur. Phys. J. Appl. Phys. 28, 361 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    A. Amon, V.B. Nguyen, A. Bruand, J. Crassous, E. Clément, Phys. Rev. Lett. 108, 135502 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    C.E. Maloney, A. Lemaitre, Phys. Rev. E 74, 016118 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    A. Tanguy, F. Leonforte, J.-L. Barrat, Eur. Phys. J. E 20, 355 (2006).CrossRefGoogle Scholar
  10. 10.
    D. Rodney, A. Tanguy, D. Vandembroucq, Modelling Simul. Mater. Sci. Eng. 19, 083001 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    J.-C. Baret, D. Vandembroucq, S. Roux, Phys. Rev. Lett. 89, 195506 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    G. Picard, A. Ajdari, F. Lequeux, L. Bocquet, Phys. Rev. E 71, 010501 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    E.R. Homer, C.A. Schuh, Acta Mater. 57, 2823 (2009).CrossRefGoogle Scholar
  14. 14.
    P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    P. Sollich, Phys. Rev. E 58, 738 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    W.H. Herschel, R. Bulkley, Kolloid-Z. 39, 291 (1926).CrossRefGoogle Scholar
  17. 17.
    A. Nicolas, K. Martens, J.-L. Barrat, EPL 107, 44003 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    P. Hébraud, F. Lequeux, Phys. Rev. Lett. 81, 2934 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    M.L. Falk, J.S. Langer, Annu. Rev. Condens. Matter Phys. 2, 353 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Gati, PhD Thesis, http://pastel.archives-ouvertes.fr/pastel-00000883, Ecole des Ponts ParisTech (2004).
  21. 21.
    E. Cancès, I. Catto, Y. Gati, SIAM J. Math. Anal. 37, 60 (2006).CrossRefGoogle Scholar
  22. 22.
    E. Cancès, I. Catto, Y. Gati, C.L. Bris, Multiscale Model. Simul. 4, 1041 (2006).CrossRefGoogle Scholar
  23. 23.
    J. Olivier, PhD Thesis, http://tel.archives-ouvertes.fr/tel-00625455 Université de Grenoble (2011).
  24. 24.
    J. Olivier, Z. Angew. Math. Phys. 61, 445 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    J. Olivier, M. Renardy, SIAM J. Appl. Math. 71, 1144 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    J. Olivier, Sci. China Math. 55, 435 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    L. Bocquet, A. Colin, A. Ajdari, Phys. Rev. Lett. 103, 036001 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    J.-P. Bouchaud, A. Comtet, C. Monthus, J. Phys. I 5, 1521 (1995).Google Scholar
  29. 29.
    F. Puosi, K. Martens, J. Olivier, arXiv:1501.04574 [cond-mat.soft].
  30. 30.
    K. Martens, L. Bocquet, J.-L. Barrat, Soft Matter 8, 4197 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    A. Nicolas, K. Martens, L. Bocquet, J.-L. Barrat, Soft Matter 10, 4648 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    A. Lemaitre, C. Caroli, Phys. Rev. Lett. 103, 065501 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    K. Martens, L. Bocquet, J.-L. Barrat, Phys. Rev. Lett. 106, 156001 (2011).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Elisabeth Agoritsas
    • 1
    • 2
    Email author
  • Eric Bertin
    • 1
    • 2
  • Kirsten Martens
    • 1
    • 2
  • Jean-Louis Barrat
    • 1
    • 2
  1. 1.LIPHYUniv. Grenoble AlpesGrenobleFrance
  2. 2.LIPHYCNRSGrenobleFrance

Personalised recommendations