Convection and fluidization in oscillatory granular flows: The role of acoustic streaming

Colloquium

Abstract

Convection and fluidization phenomena in vibrated granular beds have attracted a strong interest from the physics community since the last decade of the past century. As early reported by Faraday, the convective flow of large inertia particles in vibrated beds exhibits enigmatic features such as frictional weakening and the unexpected influence of the interstitial gas. At sufficiently intense vibration intensities surface patterns appear bearing a stunning resemblance with the surface ripples (Faraday waves) observed for low-viscosity liquids, which suggests that the granular bed transits into a liquid-like fluidization regime despite the large inertia of the particles. In his 1831 seminal paper, Faraday described also the development of circulation air currents in the vicinity of vibrating plates. This phenomenon (acoustic streaming) is well known in acoustics and hydrodynamics and occurs whenever energy is dissipated by viscous losses at any oscillating boundary. The main argument of the present paper is that acoustic streaming might develop on the surface of the large inertia particles in the vibrated granular bed. As a consequence, the drag force on the particles subjected to an oscillatory viscous flow is notably enhanced. Thus, acoustic streaming could play an important role in enhancing convection and fluidization of vibrated granular beds, which has been overlooked in previous studies. The same mechanism might be relevant to geological events such as fluidization of landslides and soil liquefaction by earthquakes and sound waves.

Graphical abstract

Keywords

Flowing Matter: Granular Matter 

References

  1. 1.
    M. Faraday, Philos. Trans. R. Soc. London 52, 299 (1831).CrossRefGoogle Scholar
  2. 2.
    Sedley Taylor, Proc. R. Soc. London 27, 71 (1878).CrossRefGoogle Scholar
  3. 3.
    V. Dvorak, Ann. Phys. 227, 634 (1874).CrossRefGoogle Scholar
  4. 4.
    E.N. da C. Andrade, Proc. R. Soc. London, Ser A 134, 445 (1931).ADSCrossRefGoogle Scholar
  5. 5.
    B.A. Al-Zaitone, C. Tropea, Chem. Engin. Sci. 66, 3914 (2011).CrossRefGoogle Scholar
  6. 6.
    Lord Rayleigh, Philos. Trans. R. Soc. London 175, 1 (1884).MATHCrossRefGoogle Scholar
  7. 7.
    Henk Jan van Gerner, Ko van der Weele, Martin A. van der Hoef, Devaraj van der Meer, J. Fluid Mech. 689, 203 (2011).MATHADSCrossRefGoogle Scholar
  8. 8.
    H. Schlichting, Phys. Z. 33, 327 (1932).Google Scholar
  9. 9.
    Peter J. Westervelt, J. Acous. Soc. Am. 25, 60 (1953).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    J. Holtsmark, I. Johnsen, T. Sikkeland, S. Skavlem, J. Acous. Soc. Am. 26, 26 (1954).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    N. Riley, Q. J. Mech. Appl. Math. 19, 461 (1966).CrossRefGoogle Scholar
  12. 12.
    B.J. Davidson, N. Riley, J. Fluid Mech. 53, 287 (1972).MATHADSCrossRefGoogle Scholar
  13. 13.
    A. Gopinath, A.F. Mills, ASME: J. Heat Transf. 115, 332 (1993).CrossRefGoogle Scholar
  14. 14.
    Chun P. Lee, Taylor G. Wang, J. Acoust. Soc. Am. 88, 2367 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    E.H. Trinh, J.L. Robey, Phys. Fluids 6, 3567 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    S.V. Komarov, Advanced Topics in Mass Transfer, chapter Application of Airborne Sound Waves for Mass Transfer Enhancement (InTech, 2011) pp. 61--86.Google Scholar
  17. 17.
    J.M. Valverde, J.M.P. Ebri, M.A.S. Quintanilla, Environ. Sci. Technol. 47, 9538 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    Steven L. Garrett, Am. J. Phys. 72, 11 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    F.H. Reynst, Pulsating combustion: the collected works of F.H. Reynst (Pergamom Press, 1961).Google Scholar
  20. 20.
    J.O. Gagnon, M.P. Paidoussis, J. Fluids Struct. 8, 293 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    A.L. Yarin, G. Brenn, O. Kastner, D. Rensink, C. Tropea, J. Fluid Mech. 399, 151 (1999).MATHADSCrossRefGoogle Scholar
  22. 22.
    Frieder Mugele, Adrian Staicu, Rina Bakker, Dirk van den Ende, Lab Chip 11, 2011 (2011).CrossRefGoogle Scholar
  23. 23.
    Martin Wiklund, Roy Green, Mathias Ohlin, Lab Chip 12, 2438 (2012).CrossRefGoogle Scholar
  24. 24.
    Po-Chuan Huang, Chih-Cheng Chen, Hsiu-Ying Hwang, Int. J. Heat Mass Transfer 61, 696 (2013).CrossRefGoogle Scholar
  25. 25.
    N. Riley, Annu. Rev. Fluid Mech. 33, 43 (2001).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Greg W. Swift, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators (Acoustical Society of America through the American Institute of Physics, 2002).Google Scholar
  27. 27.
    S. Yavuzkurt, M.Y. Ha, G. Reethof, G. Koopmann, A.W. Scaroni, J. Energy Res. Technol. 113, 286 (1991).CrossRefGoogle Scholar
  28. 28.
    A. Gopinath, H.R. Harder, Int. J. Heat Mass Transt. 43, 505 (2000).MATHCrossRefGoogle Scholar
  29. 29.
    Yonglin Ju, Yan Jiang, Yuan Zhou, Cryogenics 38, 649 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    B.P.M. Helvensteijn, A. Kashani, A.L. Spivak, P.R. Roach, J.M. Lee, and P. Kittel, in Advances in Cryogenic Engineering, Vol. 43 edited by P. Kittel (Springer US, 1998) pp. 1619--1626.Google Scholar
  31. 31.
    Melda Ödinç Çarpinlioglu, Mehmet Yasar Gündogdu, Flow Meas. Instrum. 12, 163 (2001).CrossRefGoogle Scholar
  32. 32.
    Li wen Jin, KaiChoong Leong, Transport Porous Media 72, 37 (2008).CrossRefGoogle Scholar
  33. 33.
    J.M. Valverde, F.J. Duran-Olivencia, Riv. Nuovo Cimento 37, 591 (2014).Google Scholar
  34. 34.
    L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, chapter Fluid Mechanics (Pergamon Press, New York, 1995).Google Scholar
  35. 35.
    Jose Manuel Valverde, Contemp. Phys. DOI: 10.1080/00107514.2015.1008742(0):1--210.Google Scholar
  36. 36.
    Sungryel Choi, Kwanwoo Nam, Sangkwon Jeong, Cryogenics 44, 203 (2004).CrossRefGoogle Scholar
  37. 37.
    D. Klotsa, Michael R. Swift, R.M. Bowley, P.J. King, Phys. Rev. E 79, 021302 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    R. Wunenburger, V. Carrier, Y. Garrabos, Phys. Fluids 14, 2350 (2002).ADSCrossRefGoogle Scholar
  39. 39.
    C. Laroche, S. Douady, S. Fauve, J. Phys. (Paris) 50, 699 (1989).CrossRefGoogle Scholar
  40. 40.
    R. Evesque, J. Phys. (Paris) 51, 697 (1990).CrossRefGoogle Scholar
  41. 41.
    P. Evesque, Contemp. Phys. 33, 245 (1992).ADSCrossRefGoogle Scholar
  42. 42.
    D.-W. Wang, Y.-C. Chou, T.-M. Hong, Europhys. Lett. 35, 333 (1996).ADSCrossRefGoogle Scholar
  43. 43.
    Igor S. Aranson, Lev S. Tsimring, Rev. Mod. Phys. 78, 641 (2006).ADSCrossRefGoogle Scholar
  44. 44.
    H. Pak, E. Van Doorn, R.P. Behringer, Phys. Rev. Lett. 74, 4643 (1995).ADSCrossRefGoogle Scholar
  45. 45.
    M.H.I. Baird, M.G. Senior, R.J. Thompson, Chem. Engin. Sci. 22, 551 (1967).CrossRefGoogle Scholar
  46. 46.
    E.B. Tunstall, G. Houghton, Chem. Engin. Sci. 23, 1067 (1968).CrossRefGoogle Scholar
  47. 47.
    Yong Deng, Mooson Kwauk, Chem. Engin. Sci. 45, 483 (1990).CrossRefGoogle Scholar
  48. 48.
    T.S. Zhao, P. Cheng, Cryogenics 36, 333 (1996).ADSCrossRefGoogle Scholar
  49. 49.
    J.A.C. Gallas, H.J. Herrmann, S. Sokołowski, Phys. Rev. Lett. 69, 1371 (1992).ADSCrossRefGoogle Scholar
  50. 50.
    Y.-h. Taguchi, Phys. Rev. Lett. 69, 1367 (1992).ADSCrossRefGoogle Scholar
  51. 51.
    J.J. Moreau, in Powders Grains 93, edited by C. Thornton (Balkema, Rotterdam, 1993) p. 227.Google Scholar
  52. 52.
    S. Luding, E. Clément, A. Blumen, J. Rajchenbach, J. Duran, Phys. Rev. E 50, R1762 (1994).ADSCrossRefGoogle Scholar
  53. 53.
    Henk Jan van Gerner, Martin A. van der Hoef, Devaraj van der Meer, Ko van der Weele, Phys. Rev. E 76, 051305 (2007).ADSCrossRefGoogle Scholar
  54. 54.
    Henk Jan van Gerner, Gabriel A. Caballero-Robledo, Devaraj van der Meer, Ko van der Weele, Martin A. van der Hoef, Phys. Rev. Lett. 103, 028001 (2009).ADSCrossRefGoogle Scholar
  55. 55.
    J. Li, I.S. Aranson, W.-K. Kwok, L.S. Tsimring, Phys. Rev. Lett. 90, 134301 (2003).ADSCrossRefGoogle Scholar
  56. 56.
    Stuart B. Savage, J. Fluid Mech. 194, 457 (1988).ADSCrossRefGoogle Scholar
  57. 57.
    P. Evesque, E. Szmatula, J.-P. Denis, Europhys. Lett. 12, 623 (1990).ADSCrossRefGoogle Scholar
  58. 58.
    Jose Manuel Valverde, Fluidization of Fine Powders: Cohesive versus Dynamical Aggregation, Vol. 18 Particle Technology Series (Springer, 2013).Google Scholar
  59. 59.
    R.D. Wildman, J.M. Huntley, D.J. Parker, Phys. Rev. E 63, 061311 (2001).ADSCrossRefGoogle Scholar
  60. 60.
    G. D'Anna, P. Mayor, A. Barrat, V. Loreto, Franco Nori, Nature 424, 909 (2003).ADSCrossRefGoogle Scholar
  61. 61.
    Heinrich M. Jaeger, Sidney R. Nagel, Robert P. Behringer, Rev. Mod. Phys. 68, 1259 (1996).ADSCrossRefGoogle Scholar
  62. 62.
    M. Nakagawa, S.A. Altobelli, A. Caprihan, E. Fukushima, E.K. Jeong, Exp. Fluids 16, 54 (1993).CrossRefGoogle Scholar
  63. 63.
    A. Castellanos, J.M. Valverde, A.T. Perez, A. Ramos, P.K. Watson, Phys. Rev. Lett. 82, 1156 (1999).ADSCrossRefGoogle Scholar
  64. 64.
    J.M. Valverde, A. Castellanos, M.A.S. Quintanilla, Contemp. Phys. 44, 389 (2003).ADSCrossRefGoogle Scholar
  65. 65.
    R.P. Behringer, E. van Doorn, R.R. Hartley, H.K. Pak, Granular Matter 4, 9 (2002).CrossRefGoogle Scholar
  66. 66.
    E. Falcon, K. Kumar, K. Bajaj, J.K. Bhattacharjee, Phys. Rev. E 59, 5716 (1999).ADSCrossRefGoogle Scholar
  67. 67.
    H. Pak, R.P. Behringer, Phys. Rev. Lett. 71, 1832 (1993).ADSCrossRefGoogle Scholar
  68. 68.
    F. Melo, P. Umbanhowar, H.L. Swinney, Phys. Rev. Lett. 72, 172 (1994).ADSCrossRefGoogle Scholar
  69. 69.
    Benku Thomas, Arthur M. Squires, Phys. Rev. Lett. 81, 574 (1998).ADSCrossRefGoogle Scholar
  70. 70.
    J. Duran, Phys. Rev. Lett. 84, 5126 (2000).ADSCrossRefGoogle Scholar
  71. 71.
    R.J. Milburn, M.A. Naylor, A.J. Smith, M.C. Leaper, K. Good, Michael R. Swift, P.J. King, Phys. Rev. E 71, 011308 (2005).ADSCrossRefGoogle Scholar
  72. 72.
    P. Evesque, J. Rajchenbach, Phys. Rev. Lett. 62, 44 (1989).ADSCrossRefGoogle Scholar
  73. 73.
    Eric van Doorn, R.P. Behringer, Phys. Lett. A 235, 469 (1997).ADSCrossRefGoogle Scholar
  74. 74.
    Francisco Melo, Paul B. Umbanhowar, Harry L. Swinney, Phys. Rev. Lett. 75, 3838 (1995).ADSCrossRefGoogle Scholar
  75. 75.
    Sui Lei, Miao Guo-Qing, Wei Rong-Jue, Chin. Phys. Lett. 18, 614 (2001).ADSCrossRefGoogle Scholar
  76. 76.
    P.C. Carman, Chem. Engin. Res. Design 75, S32 (1997).CrossRefGoogle Scholar
  77. 77.
    K. Rietema, The Dynamics of Fine Powders (Elsevier, London, 1991).Google Scholar
  78. 78.
    M.L. Hunt, C.R. Wassgren, C.E. Brennen, J. Appl. Mech. 63, 712 (1996).CrossRefGoogle Scholar
  79. 79.
    J.M. Valverde, A. Castellanos, Europhys. Lett. 75, 985 (2006).ADSCrossRefGoogle Scholar
  80. 80.
    R.L. Brown, J.C. Richards, P.V. Danckwerts, Principles of Powder Mechanics: Essays on the Packing and Flow of Powders and Bulk Solids (Elsevier Science, 2013).Google Scholar
  81. 81.
    W.C. Yang, Handbook of Fluidization and Fluid-Particle Systems (Taylor & Francis, 2003).Google Scholar
  82. 82.
    A.C. Hoffmann, H.J. Finkers, Powder Technol. 82, 197 (1995).CrossRefGoogle Scholar
  83. 83.
    E.R. Nowak, J.B. Knight, E. Ben-Naim, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 57, 1971 (1998).ADSCrossRefGoogle Scholar
  84. 84.
    Osborne Reynolds, Philos. Mag. Ser. 5 20, 469 (1885).CrossRefGoogle Scholar
  85. 85.
    Sandra Wegner, Ralf Stannarius, Axel Boese, Georg Rose, Balazs Szabo, Ellak Somfai, Tamas Borzsonyi, Soft Matter 10, 5157 (2014).ADSCrossRefGoogle Scholar
  86. 86.
    E. van Doorn, R.P. Behringer, Europhys. Lett. 40, 387 (1997).ADSCrossRefGoogle Scholar
  87. 87.
    Jose Manuel Valverde, Soft Matter 9, 8792 (2013).CrossRefGoogle Scholar
  88. 88.
    P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382, 793 (1996).ADSCrossRefGoogle Scholar
  89. 89.
    P.B. Umbanhowar, F. Melo, H.L. Swinney, Physica A 249, 1 (1998).ADSCrossRefGoogle Scholar
  90. 90.
    S. Douady, S. Fauve, C. Laroche, Europhys. Lett. 8, 621 (1989).ADSCrossRefGoogle Scholar
  91. 91.
    John R. de Bruyn, B.C. Lewis, M.D. Shattuck, Harry L. Swinney, Phys. Rev. E 63, 041305 (2001).ADSCrossRefGoogle Scholar
  92. 92.
    Osamu Sano, Ataka Takei, AIP Conf. Proc. 1145, 729 (2009).ADSCrossRefGoogle Scholar
  93. 93.
    H.J. Melosh, Nature 379, 601 (1996).ADSCrossRefGoogle Scholar
  94. 94.
    Kaiwen Xia, Sheng Huang, Chris Marone, Geochem. Geophys. Geosyst. 14, 1012 (2013).ADSCrossRefGoogle Scholar
  95. 95.
    Antoine Lucas, Anne Mangeney, Jean Paul Ampuero, Nat. Commun. 5, 3417 (2014).Google Scholar
  96. 96.
    Alexander Wong, Chi-Yuen Wang, J. Geophys. Res. B: Solid Earth 112, B10305 (2007).CrossRefGoogle Scholar
  97. 97.
    R. Chirone, L. Massimilla, S. Russo, Chem. Engin. Sci. 48, 41 (1993).CrossRefGoogle Scholar
  98. 98.
    A. Ajbar, Y. Bakhbakhi, S. Ali, M. Asif, Powder Technol. 206, 327 (2011).CrossRefGoogle Scholar
  99. 99.
    P. Ammendola, R. Chirone, F. Raganati, Chem. Engin. Proc.: Proc. Intensif. 50, 885 (2011).CrossRefGoogle Scholar
  100. 100.
    J.M. Valverde, F. Raganati, M.A.S. Quintanilla, J.M.P. Ebri, P. Ammendola, R. Chirone, Appl. Energy 111, 538 (2013).CrossRefGoogle Scholar
  101. 101.
    F. Raganati, P. Ammendola, R. Chirone, Appl. Energy 113, 1269 (2014).CrossRefGoogle Scholar
  102. 102.
    C. Soria-Hoyo, J.M. Valverde, A. Castellanos, Powder Technol. 196, 257 (2009).CrossRefGoogle Scholar
  103. 103.
    H. Schubert, Powder Technol. 37, 105 (1984).CrossRefGoogle Scholar
  104. 104.
    M. Campbell, J.A. Cosgrove, C.A. Greated, S. Jack, D. Rockliff, Optics Laser Technol. 32, 629 (2000).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of SevilleSevilleSpain

Personalised recommendations