On the collapse pressure of armored bubbles and drops

Abstract

Drops and bubbles wrapped in dense monolayers of hydrophobic particles are known to sustain a significant decrease of their internal pressure. Through dedicated experiments we investigate the collapse behavior of such armored water drops as a function of the particle-to-drop size ratio in the range 0.02–0.2. We show that this parameter controls the behavior of the armor during the deflation: at small size ratios the drop shrinkage proceeds through the soft crumpling of the monolayer, at intermediate ratios the drop becomes faceted, and for the largest studied ratios the armor behaves like a granular arch. The results show that each of the three morphological regimes is characterized by an increasing magnitude of the collapse pressure. This increase is qualitatively modeled thanks to a mechanism involving out-of-plane deformations and particle disentanglement in the armor.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S.U. Pickering, J. Chem. Soc. 91, 2001 (1907).

    Article  Google Scholar 

  2. 2.

    R.G. Arlagova, D.S. Warhadpande, V.N. Paunov, O.D. Velev, Langmuir 20, 10371 (2004).

    Article  Google Scholar 

  3. 3.

    B.P. Binks, T.S. Horozov, Angew. Chem., Int. Ed. 44, 3722 (2005).

    Article  Google Scholar 

  4. 4.

    U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Angew. Chem., Int. Ed. 45, 3526 (2006).

    Article  Google Scholar 

  5. 5.

    A. Stocco, E. Rio, B.P. Binks, D. Langevin, Soft Matter 7, 1260 (2011).

    Article  ADS  Google Scholar 

  6. 6.

    Z.P. Du, M.P. Bilbao-Montoya, B.P. Binks, E. Dickinson, R. Ettelaie, B.S. Murray, Langmuir 19, 3106 (2003).

    Article  Google Scholar 

  7. 7.

    E. Dickinson, R. Ettelaie, T. Kostakis, B.S. Murray, Langmuir 20, 8517 (2004).

    Article  Google Scholar 

  8. 8.

    J. Kumaki, Macromolecules 19, 2258 (1986).

    Article  ADS  Google Scholar 

  9. 9.

    G. Lagubeau, A. Rescaglio, F. Melo, Phys. Rev. E 90, 030201 (2014).

    Article  ADS  Google Scholar 

  10. 10.

    B. Laborie, F. Lachaussée, E. Lorenceau, F. Rouyer, Soft Matter 9, 4822 (2013).

    Article  ADS  Google Scholar 

  11. 11.

    R. Aveyard, J.H. Clint, D. Nees, N. Quirke, Langmuir 16, 8820 (2000).

    Article  Google Scholar 

  12. 12.

    D.Y. Zang, E. Rio, D. Langevin, B. Wei, B.P. Binks, Eur. Phys. J. E 31, 125 (2010).

    Article  Google Scholar 

  13. 13.

    D. Vella, P. Aussillous, L. Mahadevan, Europhys. Lett. 68, 212 (2004).

    Article  ADS  Google Scholar 

  14. 14.

    S.S. Datta, H. Cheung Shum, D.A. Weitz, Langmuir 26, 18612 (2010).

    Article  Google Scholar 

  15. 15.

    C. Planchette, E. Lorenceau, A.-L. Biance, Soft Matter 8, 2444 (2012).

    Article  ADS  Google Scholar 

  16. 16.

    S. Kam, W. Rossen, J. Colloid Interface Sci. 213, 329 (1999).

    Article  Google Scholar 

  17. 17.

    P.A. Kralchevsky, I.B. Ivanov, K.P. Ananthapadmanabhan, A. Lips, Langmuir 21, 50 (2005).

    Article  Google Scholar 

  18. 18.

    M. Abkarian, A.B. Subramaniam, S.-H. Kim, R.J. Larsen, S.-M. Yang, H.A. Stone, Phys. Rev. Lett. 99, 188301 (2007).

    Article  ADS  Google Scholar 

  19. 19.

    C. Monteux, J. Kirkwood, H. Xu, E. Jung, G.G. Fuller, Phys. Chem. Chem. Phys. 9, 6344 (2007).

    Article  Google Scholar 

  20. 20.

    Th. von Kármán, H.-S. Tsien, J. Aeronaut. Sci. 7, 43 (1939) L. Landau, E. Lifchitz, A. Kosevich, Théorie de l’élasticité.

    Article  MathSciNet  Google Scholar 

  21. 21.

    S.B.G. O'Brien, J. Colloid Interface Sci. 183, 51 (1996).

    Article  Google Scholar 

  22. 22.

    X. Chateau, O. Pitois, J. Colloid Interface Sci. 259, 346 (2003).

    Article  Google Scholar 

  23. 23.

    O. Pitois, X. Chateau, Langmuir 18, 9751 (2002).

    Article  Google Scholar 

  24. 24.

    G.B. Davies, T. Krüger, P.V. Coveney, J. Harting, J. Chem. Phys. 141, 154902 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. Pitois.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pitois, O., Buisson, M. & Chateau, X. On the collapse pressure of armored bubbles and drops. Eur. Phys. J. E 38, 48 (2015). https://doi.org/10.1140/epje/i2015-15048-9

Download citation

Keywords

  • Flowing Matter: Granular Matter