On the collapse pressure of armored bubbles and drops

  • O. PitoisEmail author
  • M. Buisson
  • X. Chateau
Regular Article


Drops and bubbles wrapped in dense monolayers of hydrophobic particles are known to sustain a significant decrease of their internal pressure. Through dedicated experiments we investigate the collapse behavior of such armored water drops as a function of the particle-to-drop size ratio in the range 0.02–0.2. We show that this parameter controls the behavior of the armor during the deflation: at small size ratios the drop shrinkage proceeds through the soft crumpling of the monolayer, at intermediate ratios the drop becomes faceted, and for the largest studied ratios the armor behaves like a granular arch. The results show that each of the three morphological regimes is characterized by an increasing magnitude of the collapse pressure. This increase is qualitatively modeled thanks to a mechanism involving out-of-plane deformations and particle disentanglement in the armor.

Graphical abstract


Flowing Matter: Granular Matter 


  1. 1.
    S.U. Pickering, J. Chem. Soc. 91, 2001 (1907).CrossRefGoogle Scholar
  2. 2.
    R.G. Arlagova, D.S. Warhadpande, V.N. Paunov, O.D. Velev, Langmuir 20, 10371 (2004).CrossRefGoogle Scholar
  3. 3.
    B.P. Binks, T.S. Horozov, Angew. Chem., Int. Ed. 44, 3722 (2005).CrossRefGoogle Scholar
  4. 4.
    U.T. Gonzenbach, A.R. Studart, E. Tervoort, L.J. Gauckler, Angew. Chem., Int. Ed. 45, 3526 (2006).CrossRefGoogle Scholar
  5. 5.
    A. Stocco, E. Rio, B.P. Binks, D. Langevin, Soft Matter 7, 1260 (2011).CrossRefADSGoogle Scholar
  6. 6.
    Z.P. Du, M.P. Bilbao-Montoya, B.P. Binks, E. Dickinson, R. Ettelaie, B.S. Murray, Langmuir 19, 3106 (2003).CrossRefGoogle Scholar
  7. 7.
    E. Dickinson, R. Ettelaie, T. Kostakis, B.S. Murray, Langmuir 20, 8517 (2004).CrossRefGoogle Scholar
  8. 8.
    J. Kumaki, Macromolecules 19, 2258 (1986).CrossRefADSGoogle Scholar
  9. 9.
    G. Lagubeau, A. Rescaglio, F. Melo, Phys. Rev. E 90, 030201 (2014).CrossRefADSGoogle Scholar
  10. 10.
    B. Laborie, F. Lachaussée, E. Lorenceau, F. Rouyer, Soft Matter 9, 4822 (2013).CrossRefADSGoogle Scholar
  11. 11.
    R. Aveyard, J.H. Clint, D. Nees, N. Quirke, Langmuir 16, 8820 (2000).CrossRefGoogle Scholar
  12. 12.
    D.Y. Zang, E. Rio, D. Langevin, B. Wei, B.P. Binks, Eur. Phys. J. E 31, 125 (2010).CrossRefGoogle Scholar
  13. 13.
    D. Vella, P. Aussillous, L. Mahadevan, Europhys. Lett. 68, 212 (2004).CrossRefADSGoogle Scholar
  14. 14.
    S.S. Datta, H. Cheung Shum, D.A. Weitz, Langmuir 26, 18612 (2010).CrossRefGoogle Scholar
  15. 15.
    C. Planchette, E. Lorenceau, A.-L. Biance, Soft Matter 8, 2444 (2012).CrossRefADSGoogle Scholar
  16. 16.
    S. Kam, W. Rossen, J. Colloid Interface Sci. 213, 329 (1999).CrossRefGoogle Scholar
  17. 17.
    P.A. Kralchevsky, I.B. Ivanov, K.P. Ananthapadmanabhan, A. Lips, Langmuir 21, 50 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Abkarian, A.B. Subramaniam, S.-H. Kim, R.J. Larsen, S.-M. Yang, H.A. Stone, Phys. Rev. Lett. 99, 188301 (2007).CrossRefADSGoogle Scholar
  19. 19.
    C. Monteux, J. Kirkwood, H. Xu, E. Jung, G.G. Fuller, Phys. Chem. Chem. Phys. 9, 6344 (2007).CrossRefGoogle Scholar
  20. 20.
    Th. von Kármán, H.-S. Tsien, J. Aeronaut. Sci. 7, 43 (1939) L. Landau, E. Lifchitz, A. Kosevich, Théorie de l’élasticité.CrossRefMathSciNetGoogle Scholar
  21. 21.
    S.B.G. O'Brien, J. Colloid Interface Sci. 183, 51 (1996).CrossRefGoogle Scholar
  22. 22.
    X. Chateau, O. Pitois, J. Colloid Interface Sci. 259, 346 (2003).CrossRefGoogle Scholar
  23. 23.
    O. Pitois, X. Chateau, Langmuir 18, 9751 (2002).CrossRefGoogle Scholar
  24. 24.
    G.B. Davies, T. Krüger, P.V. Coveney, J. Harting, J. Chem. Phys. 141, 154902 (2014).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratoire Navier, UMR 8205 CNRS - école des Ponts ParisTech - IFSTTARUniversité Paris EstChamps-sur-MarneFrance

Personalised recommendations