Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water

  • Connor R. C. Buhariwalla
  • Richard K. Bowles
  • Ivan Saika-Voivod
  • Francesco Sciortino
  • Peter H. Poole
Regular Article

Abstract

The ST2 interaction potential has been used in a large number of simulation studies to explore the possibility of a liquid-liquid phase transition (LLPT) in supercooled water. Using umbrella sampling Monte Carlo simulations of ST2 water, we evaluate the free energy of formation of small ice nuclei in the supercooled liquid in the vicinity of the Widom line, the region above the critical temperature of the LLPT where a number of thermodynamic anomalies occur. Our results show that in this region there is a substantial free-energy cost for the formation of small ice nuclei, demonstrating that the thermodynamic anomalies associated with the Widom line in ST2 water occur in a well-defined metastable liquid phase. On passing through the Widom line, we identify changes in the free energy to form small ice nuclei that illustrate how the thermodynamic anomalies associated with the LLPT may influence the ice nucleation process.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    P.H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Nature 360, 324 (1992).CrossRefADSGoogle Scholar
  2. 2.
    S. Harrington, R. Zhang, P.H. Poole, F. Sciortino, H. Stanley, Phys. Rev. Lett. 78, 2409 (1997).CrossRefADSGoogle Scholar
  3. 3.
    O. Mishima, H.E. Stanley, Nature 396, 329 (1998).CrossRefADSGoogle Scholar
  4. 4.
    O. Mishima, H.E. Stanley, Nature 392, 164 (1998).CrossRefADSGoogle Scholar
  5. 5.
    P.G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).ADSGoogle Scholar
  6. 6.
    A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen, S.-H. Chen, J. Chem. Phys. 121, 10843 (2004).CrossRefADSGoogle Scholar
  7. 7.
    L. Xu, P. Kumar, S.V. Buldyrev, S.-H. Chen, P.H. Poole, F. Sciortino, H.E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 102, 16558 (2005).CrossRefADSGoogle Scholar
  8. 8.
    P.H. Poole, I. Saika-Voivod, F. Sciortino, J. Phys.: Condens. Matter 17, L431 (2005).ADSGoogle Scholar
  9. 9.
    C.W. Hsu, J. Largo, F. Sciortino, F.W. Starr, Proc. Natl. Acad. Sci. U.S.A. 105, 13711 (2008).CrossRefADSGoogle Scholar
  10. 10.
    Y. Liu, A.Z. Panagiotopoulos, P.G. Debenedetti, J. Chem. Phys. 131, 104508 (2009).CrossRefADSGoogle Scholar
  11. 11.
    D.T. Limmer, D. Chandler, J. Chem. Phys. 135, 134503 (2011).CrossRefADSGoogle Scholar
  12. 12.
    F. Sciortino, I. Saika-Voivod, P.H. Poole, Phys. Chem. Chem. Phys. 13, 19759 (2011).CrossRefGoogle Scholar
  13. 13.
    M.J. Cuthbertson, P.H. Poole, Phys. Rev. Lett. 106, 115706 (2011).CrossRefADSGoogle Scholar
  14. 14.
    P.H. Poole, S.R. Becker, F. Sciortino, F.W. Starr, J. Phys. Chem. B 115, 14176 (2011).CrossRefGoogle Scholar
  15. 15.
    K. Winkel, E. Mayer, T. Loerting, J. Phys. Chem. B 115, 14141 (2011).CrossRefGoogle Scholar
  16. 16.
    Y. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 108, 12206 (2011).CrossRefGoogle Scholar
  17. 17.
    T.A. Kesselring, G. Franzese, S.V. Buldyrev, H.J. Herrmann, H.E. Stanley, Sci. Rep. 2, 474 (2012).CrossRefADSGoogle Scholar
  18. 18.
    P. Gallo, F. Sciortino, Phys. Rev. Lett. 109, 177801 (2012).CrossRefADSGoogle Scholar
  19. 19.
    Y. Liu, J.C. Palmer, A.Z. Panagiotopoulos, P.G. Debenedetti, J. Chem. Phys. 137, 214505 (2012).CrossRefADSGoogle Scholar
  20. 20.
    P.H. Poole, R.K. Bowles, I. Saika-Voivod, F. Sciortino, J. Chem. Phys. 138, 034505 (2013).CrossRefADSGoogle Scholar
  21. 21.
    D.T. Limmer, D. Chandler, J. Chem. Phys. 138, 214504 (2013).CrossRefADSGoogle Scholar
  22. 22.
    J.C. Palmer, R. Car, P.G. Debenedetti, Faraday Discuss. 167, 77 (2013).CrossRefGoogle Scholar
  23. 23.
    K. Amann-Winkel et al., Proc. Natl. Acad. Sci. U.S.A. 110, 17720 (2013).CrossRefGoogle Scholar
  24. 24.
    F. Smallenburg, L. Filion, F. Sciortino, Nat. Phys. 10, 653 (2014).CrossRefGoogle Scholar
  25. 25.
    J.C. Palmer, F. Martelli, Y. Liu, R. Car, A.Z. Panagiotopoulos, P.G. Debenedetti, Nature 510, 385 (2014).CrossRefADSGoogle Scholar
  26. 26.
    V. Holten, J.C. Palmer, P.H. Poole, P.G. Debenedetti, M.A. Anisimov, J. Chem. Phys. 140, 104502 (2014).CrossRefADSGoogle Scholar
  27. 27.
    D. Chandler, arXiv:1407.6854 (2014).
  28. 28.
    J.C. Palmer, P.G. Debenedetti, R. Car, A.Z. Panagiotopoulos, arXiv:1407.7884 (2014).
  29. 29.
    T. Yagasaki, M. Matsumoto, H. Tanaka, Phys. Rev. E 89, 020301 (2014).CrossRefADSGoogle Scholar
  30. 30.
    F.W. Starr, F. Sciortino, Soft Matter 10, 9413 (2014).CrossRefADSGoogle Scholar
  31. 31.
    F.W. Starr, Nat. Phys. 10, 628 (2014).CrossRefGoogle Scholar
  32. 32.
    J.A. Seeberg et al., Nature 510, 381 (2014).CrossRefADSGoogle Scholar
  33. 33.
    F.H. Stillinger, A. Rahman, J. Chem. Phys. 60, 1545 (1974).CrossRefADSGoogle Scholar
  34. 34.
    V. Molinero, E.B. Moore, J. Phys. Chem. B 113, 4008 (2009).CrossRefGoogle Scholar
  35. 35.
    E.B. Moore, V. Molinero, Nature 479, 506 (2011).CrossRefADSGoogle Scholar
  36. 36.
    I. Saika-Voivod, F. Smallenburg, F. Sciortino, J. Chem. Phys. 139, 234901 (2013).CrossRefADSGoogle Scholar
  37. 37.
    S. Auer, D. Frenkel, J. Chem. Phys. 120, 3015 (2004).CrossRefADSGoogle Scholar
  38. 38.
    C. Valeriani, E. Sanz, D. Frenkel, J. Chem. Phys. 122, 194501 (2005).CrossRefADSGoogle Scholar
  39. 39.
    I. Saika-Voivod, F. Romano, F. Sciortino, J. Chem. Phys. 135, 124506 (2011).CrossRefADSGoogle Scholar
  40. 40.
    A. Reinhardt, J.P.K. Doye, E.G. Noya, C. Vega, J. Chem. Phys. 137, 194504 (2012).CrossRefADSGoogle Scholar
  41. 41.
    J. Russo, F. Romano, H. Tanaka, Nat. Mater. 13, 733 (2014).CrossRefADSGoogle Scholar
  42. 42.
    O. Steinhauser, Mol. Phys. 45, 335 (1982).CrossRefADSGoogle Scholar
  43. 43.
    F. Romano, E. Sanz, F. Sciortino, J. Chem. Phys. 134, 174502 (2011).CrossRefADSGoogle Scholar
  44. 44.
    P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983).CrossRefADSGoogle Scholar
  45. 45.
    M.R. Shirts, J.D. Chodera, J. Chem. Phys. 129, 124105 (2008).CrossRefADSGoogle Scholar
  46. 46.
    A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).CrossRefADSGoogle Scholar
  47. 47.
    S. Kumar, D. Bouzida, R.H. Swendsen, P.A. Kollman, J.M. Rosenberg, J. Comput. Chem. 13, 1011 (1992).CrossRefGoogle Scholar
  48. 48.
    P.G. Debenedetti, Metastable Liquids. Concepts and Principles (Princeton University Press, Princeton, NJ, 1996).Google Scholar
  49. 49.
    S.E.M. Lundrigan, I. Saika-Voivod, J. Chem. Phys. 131, 104503 (2009).CrossRefADSGoogle Scholar
  50. 50.
    E. Sanz, C. Vega, J.L.F. Abascal, L.G. MacDowell, Phys. Rev. Lett. 92, 255701 (2004).CrossRefADSGoogle Scholar
  51. 51.
    P.R. ten Wolde, D. Frenkel, Science 277, 1975 (1997).CrossRefGoogle Scholar
  52. 52.
    V. Talanquer, D.W. Oxtoby, J. Chem. Phys. 109, 223 (1998).CrossRefADSGoogle Scholar
  53. 53.
    R.S. Singh, B. Bagchi, J. Chem. Phys. 140, 164503 (2014).CrossRefADSGoogle Scholar
  54. 54.
    J.L.F. Abascal, C. Vega, J. Chem. Phys. 133, 234502 (2010).CrossRefADSGoogle Scholar
  55. 55.
    E. Sanz, C. Vega, J.R. Espinosa, R. Caballero-Bernal, J.L.F. Abascal, C. Valeriani, J. Am. Chem. Soc. 135, 15008 (2013).CrossRefGoogle Scholar
  56. 56.
    F. Smallenburg, P.H. Poole, F. Sciortino, to be published in Mol. Phys. (2015).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Connor R. C. Buhariwalla
    • 1
  • Richard K. Bowles
    • 2
  • Ivan Saika-Voivod
    • 3
  • Francesco Sciortino
    • 4
  • Peter H. Poole
    • 1
  1. 1.Department of PhysicsSt. Francis Xavier UniversityAntigonishCanada
  2. 2.Department of ChemistryUniversity of SaskatchewanSaskatoonCanada
  3. 3.Department of Physics and Physical OceanographyMemorial University of NewfoundlandNewfoundlandCanada
  4. 4.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations