Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water

Abstract

The ST2 interaction potential has been used in a large number of simulation studies to explore the possibility of a liquid-liquid phase transition (LLPT) in supercooled water. Using umbrella sampling Monte Carlo simulations of ST2 water, we evaluate the free energy of formation of small ice nuclei in the supercooled liquid in the vicinity of the Widom line, the region above the critical temperature of the LLPT where a number of thermodynamic anomalies occur. Our results show that in this region there is a substantial free-energy cost for the formation of small ice nuclei, demonstrating that the thermodynamic anomalies associated with the Widom line in ST2 water occur in a well-defined metastable liquid phase. On passing through the Widom line, we identify changes in the free energy to form small ice nuclei that illustrate how the thermodynamic anomalies associated with the LLPT may influence the ice nucleation process.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P.H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Nature 360, 324 (1992).

    Article  ADS  Google Scholar 

  2. 2.

    S. Harrington, R. Zhang, P.H. Poole, F. Sciortino, H. Stanley, Phys. Rev. Lett. 78, 2409 (1997).

    Article  ADS  Google Scholar 

  3. 3.

    O. Mishima, H.E. Stanley, Nature 396, 329 (1998).

    Article  ADS  Google Scholar 

  4. 4.

    O. Mishima, H.E. Stanley, Nature 392, 164 (1998).

    Article  ADS  Google Scholar 

  5. 5.

    P.G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).

    ADS  Google Scholar 

  6. 6.

    A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen, S.-H. Chen, J. Chem. Phys. 121, 10843 (2004).

    Article  ADS  Google Scholar 

  7. 7.

    L. Xu, P. Kumar, S.V. Buldyrev, S.-H. Chen, P.H. Poole, F. Sciortino, H.E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 102, 16558 (2005).

    Article  ADS  Google Scholar 

  8. 8.

    P.H. Poole, I. Saika-Voivod, F. Sciortino, J. Phys.: Condens. Matter 17, L431 (2005).

    ADS  Google Scholar 

  9. 9.

    C.W. Hsu, J. Largo, F. Sciortino, F.W. Starr, Proc. Natl. Acad. Sci. U.S.A. 105, 13711 (2008).

    Article  ADS  Google Scholar 

  10. 10.

    Y. Liu, A.Z. Panagiotopoulos, P.G. Debenedetti, J. Chem. Phys. 131, 104508 (2009).

    Article  ADS  Google Scholar 

  11. 11.

    D.T. Limmer, D. Chandler, J. Chem. Phys. 135, 134503 (2011).

    Article  ADS  Google Scholar 

  12. 12.

    F. Sciortino, I. Saika-Voivod, P.H. Poole, Phys. Chem. Chem. Phys. 13, 19759 (2011).

    Article  Google Scholar 

  13. 13.

    M.J. Cuthbertson, P.H. Poole, Phys. Rev. Lett. 106, 115706 (2011).

    Article  ADS  Google Scholar 

  14. 14.

    P.H. Poole, S.R. Becker, F. Sciortino, F.W. Starr, J. Phys. Chem. B 115, 14176 (2011).

    Article  Google Scholar 

  15. 15.

    K. Winkel, E. Mayer, T. Loerting, J. Phys. Chem. B 115, 14141 (2011).

    Article  Google Scholar 

  16. 16.

    Y. Zhang et al., Proc. Natl. Acad. Sci. U.S.A. 108, 12206 (2011).

    Article  Google Scholar 

  17. 17.

    T.A. Kesselring, G. Franzese, S.V. Buldyrev, H.J. Herrmann, H.E. Stanley, Sci. Rep. 2, 474 (2012).

    Article  ADS  Google Scholar 

  18. 18.

    P. Gallo, F. Sciortino, Phys. Rev. Lett. 109, 177801 (2012).

    Article  ADS  Google Scholar 

  19. 19.

    Y. Liu, J.C. Palmer, A.Z. Panagiotopoulos, P.G. Debenedetti, J. Chem. Phys. 137, 214505 (2012).

    Article  ADS  Google Scholar 

  20. 20.

    P.H. Poole, R.K. Bowles, I. Saika-Voivod, F. Sciortino, J. Chem. Phys. 138, 034505 (2013).

    Article  ADS  Google Scholar 

  21. 21.

    D.T. Limmer, D. Chandler, J. Chem. Phys. 138, 214504 (2013).

    Article  ADS  Google Scholar 

  22. 22.

    J.C. Palmer, R. Car, P.G. Debenedetti, Faraday Discuss. 167, 77 (2013).

    Article  Google Scholar 

  23. 23.

    K. Amann-Winkel et al., Proc. Natl. Acad. Sci. U.S.A. 110, 17720 (2013).

    Article  Google Scholar 

  24. 24.

    F. Smallenburg, L. Filion, F. Sciortino, Nat. Phys. 10, 653 (2014).

    Article  Google Scholar 

  25. 25.

    J.C. Palmer, F. Martelli, Y. Liu, R. Car, A.Z. Panagiotopoulos, P.G. Debenedetti, Nature 510, 385 (2014).

    Article  ADS  Google Scholar 

  26. 26.

    V. Holten, J.C. Palmer, P.H. Poole, P.G. Debenedetti, M.A. Anisimov, J. Chem. Phys. 140, 104502 (2014).

    Article  ADS  Google Scholar 

  27. 27.

    D. Chandler, arXiv:1407.6854 (2014).

  28. 28.

    J.C. Palmer, P.G. Debenedetti, R. Car, A.Z. Panagiotopoulos, arXiv:1407.7884 (2014).

  29. 29.

    T. Yagasaki, M. Matsumoto, H. Tanaka, Phys. Rev. E 89, 020301 (2014).

    Article  ADS  Google Scholar 

  30. 30.

    F.W. Starr, F. Sciortino, Soft Matter 10, 9413 (2014).

    Article  ADS  Google Scholar 

  31. 31.

    F.W. Starr, Nat. Phys. 10, 628 (2014).

    Article  Google Scholar 

  32. 32.

    J.A. Seeberg et al., Nature 510, 381 (2014).

    Article  ADS  Google Scholar 

  33. 33.

    F.H. Stillinger, A. Rahman, J. Chem. Phys. 60, 1545 (1974).

    Article  ADS  Google Scholar 

  34. 34.

    V. Molinero, E.B. Moore, J. Phys. Chem. B 113, 4008 (2009).

    Article  Google Scholar 

  35. 35.

    E.B. Moore, V. Molinero, Nature 479, 506 (2011).

    Article  ADS  Google Scholar 

  36. 36.

    I. Saika-Voivod, F. Smallenburg, F. Sciortino, J. Chem. Phys. 139, 234901 (2013).

    Article  ADS  Google Scholar 

  37. 37.

    S. Auer, D. Frenkel, J. Chem. Phys. 120, 3015 (2004).

    Article  ADS  Google Scholar 

  38. 38.

    C. Valeriani, E. Sanz, D. Frenkel, J. Chem. Phys. 122, 194501 (2005).

    Article  ADS  Google Scholar 

  39. 39.

    I. Saika-Voivod, F. Romano, F. Sciortino, J. Chem. Phys. 135, 124506 (2011).

    Article  ADS  Google Scholar 

  40. 40.

    A. Reinhardt, J.P.K. Doye, E.G. Noya, C. Vega, J. Chem. Phys. 137, 194504 (2012).

    Article  ADS  Google Scholar 

  41. 41.

    J. Russo, F. Romano, H. Tanaka, Nat. Mater. 13, 733 (2014).

    Article  ADS  Google Scholar 

  42. 42.

    O. Steinhauser, Mol. Phys. 45, 335 (1982).

    Article  ADS  Google Scholar 

  43. 43.

    F. Romano, E. Sanz, F. Sciortino, J. Chem. Phys. 134, 174502 (2011).

    Article  ADS  Google Scholar 

  44. 44.

    P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983).

    Article  ADS  Google Scholar 

  45. 45.

    M.R. Shirts, J.D. Chodera, J. Chem. Phys. 129, 124105 (2008).

    Article  ADS  Google Scholar 

  46. 46.

    A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

    Article  ADS  Google Scholar 

  47. 47.

    S. Kumar, D. Bouzida, R.H. Swendsen, P.A. Kollman, J.M. Rosenberg, J. Comput. Chem. 13, 1011 (1992).

    Article  Google Scholar 

  48. 48.

    P.G. Debenedetti, Metastable Liquids. Concepts and Principles (Princeton University Press, Princeton, NJ, 1996).

  49. 49.

    S.E.M. Lundrigan, I. Saika-Voivod, J. Chem. Phys. 131, 104503 (2009).

    Article  ADS  Google Scholar 

  50. 50.

    E. Sanz, C. Vega, J.L.F. Abascal, L.G. MacDowell, Phys. Rev. Lett. 92, 255701 (2004).

    Article  ADS  Google Scholar 

  51. 51.

    P.R. ten Wolde, D. Frenkel, Science 277, 1975 (1997).

    Article  Google Scholar 

  52. 52.

    V. Talanquer, D.W. Oxtoby, J. Chem. Phys. 109, 223 (1998).

    Article  ADS  Google Scholar 

  53. 53.

    R.S. Singh, B. Bagchi, J. Chem. Phys. 140, 164503 (2014).

    Article  ADS  Google Scholar 

  54. 54.

    J.L.F. Abascal, C. Vega, J. Chem. Phys. 133, 234502 (2010).

    Article  ADS  Google Scholar 

  55. 55.

    E. Sanz, C. Vega, J.R. Espinosa, R. Caballero-Bernal, J.L.F. Abascal, C. Valeriani, J. Am. Chem. Soc. 135, 15008 (2013).

    Article  Google Scholar 

  56. 56.

    F. Smallenburg, P.H. Poole, F. Sciortino, to be published in Mol. Phys. (2015).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter H. Poole.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buhariwalla, C.R.C., Bowles, R.K., Saika-Voivod, I. et al. Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water. Eur. Phys. J. E 38, 39 (2015). https://doi.org/10.1140/epje/i2015-15039-x

Download citation

Keywords

  • Flowing Matter: Liquids and Complex Fluids