Abstract
The Belousov-Zhabotinsky (BZ) reaction has become the prototype of nonlinear chemical dynamics. Microfluidic techniques provide a convenient method for emulsifying BZ solutions into monodispersed drops with diameters of tens to hundreds of microns, providing a unique system in which reaction-diffusion theory can be quantitatively tested. In this work, we investigate monolayers of microfluidically generated BZ drops confined in close-packed two-dimensional (2D) arrays through experiments and finite element simulations. We describe the transition from oscillatory to stationary chemical states with increasing coupling strength, controlled by independently varying the reaction chemistry within a drop and diffusive flux between drops. For stationary drops, we studied how the ratio of stationary oxidized to stationary reduced drops varies with coupling strength. In addition, using simulation, we quantified the chemical heterogeneity sufficient to induce mixed stationary and oscillatory patterns.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
A.M. Turing, Philos. Trans. R. Soc. London 237, 37 (1952).
K.U. Torii, Trends Cell Biol. 22, 438 (2012).
M. Cohen, B. Baum, M. Miodownik, J. R. Soc. Interface 8, 787 (2011).
P. Formosa-Jordan, M. Ibñaes, J. Stat. Mech. 2009, P03019 (2009).
A.D. Economou, A. Ohazama, T. Porntaveetus, P.T. Sharpe, S. Kondo, M.A. Basson, A. Gritli-Linde, M.T. Cobourne, J.B.A. Green, Nat. Genet. 44, 348 (2012).
R. Phillips, J. Kondev, J. Theriot, H. Garcia, Physical Biology of the Cell, 2nd edition (Garland Science, 2012).
F. Sagués, I.R. Epstein, Dalton Trans. 7, 1201 (2003).
N. Tompkins, N. Li, C. Girabawe, M. Heymann, G.B. Ermentrout, I.R. Epstein, S. Fraden, Proc. Natl. Acad. Sci. U.S.A. 111, 4397 (2014).
N. Li, J. Delgado, H.O. Gonzalez-Ochoa, I.R. Epstein, S. Fraden, Phys. Chem. Chem. Phys. 16, 10965 (2014).
J. Delgado, N. Li, M. Leda, H.O. Gonzalez-Ochoa, S. Fraden, I.R. Epstein, Soft Matter 7, 3155 (2011).
M. Toiya, V.K. Vanag, I.R. Epstein, Angew. Chem. Int. Ed. 47, 7753 (2008).
M. Toiya, H.O. Gonzlez-Ochoa, V.K. Vanag, S. Fraden, I.R. Epstein, J. Phys. Chem. Lett. 1, 1241 (2010).
C. Holtze, A.C. Rowat, J.J. Agresti, J.B. Hutchison, F.E. Angile, C.H.J. Schmitz, S. Koster, H. Duan, K.J. Humphry, R.A. Scanga et al., Lab Chip 8, 1632 (2008).
R.M. Noyes, R. Field, E. Körös, J. Am. Chem. Soc. 94, 1394 (1972).
R.J. Field, E. Körös, R.M. Noyes, J. Am. Chem. Soc. 94, 8649 (1972).
V.K. Vanag, I.R. Epstein, J. Chem. Phys. 131, 104512 (2009).
V.K. Vanag, I.R. Epstein, Phys. Rev. E 84, 066209:1 (2011).
D.G. Aronson, G.B. Ermentrout, N. Kopell, Physica D 41, 403 (1990).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Supplementary material, approximately 3.43 MB.
Supplementary material, approximately 3.43 MB.
Supplementary material, approximately 1.65 MB.
Rights and permissions
About this article
Cite this article
Li, N., Tompkins, N., Gonzalez-Ochoa, H. et al. Tunable diffusive lateral inhibition in chemical cells. Eur. Phys. J. E 38, 18 (2015). https://doi.org/10.1140/epje/i2015-15018-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2015-15018-3