Skip to main content
Log in

Tunable diffusive lateral inhibition in chemical cells

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The Belousov-Zhabotinsky (BZ) reaction has become the prototype of nonlinear chemical dynamics. Microfluidic techniques provide a convenient method for emulsifying BZ solutions into monodispersed drops with diameters of tens to hundreds of microns, providing a unique system in which reaction-diffusion theory can be quantitatively tested. In this work, we investigate monolayers of microfluidically generated BZ drops confined in close-packed two-dimensional (2D) arrays through experiments and finite element simulations. We describe the transition from oscillatory to stationary chemical states with increasing coupling strength, controlled by independently varying the reaction chemistry within a drop and diffusive flux between drops. For stationary drops, we studied how the ratio of stationary oxidized to stationary reduced drops varies with coupling strength. In addition, using simulation, we quantified the chemical heterogeneity sufficient to induce mixed stationary and oscillatory patterns.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A.M. Turing, Philos. Trans. R. Soc. London 237, 37 (1952).

    Article  ADS  Google Scholar 

  2. K.U. Torii, Trends Cell Biol. 22, 438 (2012).

    Article  Google Scholar 

  3. M. Cohen, B. Baum, M. Miodownik, J. R. Soc. Interface 8, 787 (2011).

    Article  Google Scholar 

  4. P. Formosa-Jordan, M. Ibñaes, J. Stat. Mech. 2009, P03019 (2009).

    Article  Google Scholar 

  5. A.D. Economou, A. Ohazama, T. Porntaveetus, P.T. Sharpe, S. Kondo, M.A. Basson, A. Gritli-Linde, M.T. Cobourne, J.B.A. Green, Nat. Genet. 44, 348 (2012).

    Article  Google Scholar 

  6. R. Phillips, J. Kondev, J. Theriot, H. Garcia, Physical Biology of the Cell, 2nd edition (Garland Science, 2012).

  7. F. Sagués, I.R. Epstein, Dalton Trans. 7, 1201 (2003).

    Article  Google Scholar 

  8. N. Tompkins, N. Li, C. Girabawe, M. Heymann, G.B. Ermentrout, I.R. Epstein, S. Fraden, Proc. Natl. Acad. Sci. U.S.A. 111, 4397 (2014).

    Article  ADS  Google Scholar 

  9. N. Li, J. Delgado, H.O. Gonzalez-Ochoa, I.R. Epstein, S. Fraden, Phys. Chem. Chem. Phys. 16, 10965 (2014).

    Article  Google Scholar 

  10. J. Delgado, N. Li, M. Leda, H.O. Gonzalez-Ochoa, S. Fraden, I.R. Epstein, Soft Matter 7, 3155 (2011).

    Article  ADS  Google Scholar 

  11. M. Toiya, V.K. Vanag, I.R. Epstein, Angew. Chem. Int. Ed. 47, 7753 (2008).

    Article  Google Scholar 

  12. M. Toiya, H.O. Gonzlez-Ochoa, V.K. Vanag, S. Fraden, I.R. Epstein, J. Phys. Chem. Lett. 1, 1241 (2010).

    Article  Google Scholar 

  13. C. Holtze, A.C. Rowat, J.J. Agresti, J.B. Hutchison, F.E. Angile, C.H.J. Schmitz, S. Koster, H. Duan, K.J. Humphry, R.A. Scanga et al., Lab Chip 8, 1632 (2008).

    Article  Google Scholar 

  14. R.M. Noyes, R. Field, E. Körös, J. Am. Chem. Soc. 94, 1394 (1972).

    Article  Google Scholar 

  15. R.J. Field, E. Körös, R.M. Noyes, J. Am. Chem. Soc. 94, 8649 (1972).

    Article  Google Scholar 

  16. V.K. Vanag, I.R. Epstein, J. Chem. Phys. 131, 104512 (2009).

    Article  ADS  Google Scholar 

  17. V.K. Vanag, I.R. Epstein, Phys. Rev. E 84, 066209:1 (2011).

    Article  ADS  Google Scholar 

  18. D.G. Aronson, G.B. Ermentrout, N. Kopell, Physica D 41, 403 (1990).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Fraden.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Tompkins, N., Gonzalez-Ochoa, H. et al. Tunable diffusive lateral inhibition in chemical cells. Eur. Phys. J. E 38, 18 (2015). https://doi.org/10.1140/epje/i2015-15018-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15018-3

Keywords

Navigation