Optically driven oscillations of ellipsoidal particles. Part I: Experimental observations

  • B. M. Mihiretie
  • P. Snabre
  • J. -C. Loudet
  • B. Pouligny
Regular Article

Abstract

We report experimental observations of the mechanical effects of light on ellipsoidal micrometre-sized dielectric particles, in water as the continuous medium. The particles, made of polystyrene, have shapes varying between near disk-like (aspect ratio k = 0.2 to very elongated needle-like (k = 8 . Rather than the very tightly focused beam geometry of optical tweezers, we use a moderately focused laser beam to manipulate particles individually by optical levitation. The geometry allows us varying the longitudinal position of the particle, and to capture images perpendicular to the beam axis. Experiments show that moderate-k particles are radially trapped with their long axis lying parallel to the beam. Conversely, elongated (k > 3 or flattened (k < 0.3 ellipsoids never come to rest, and permanently “dance” around the beam, through coupled translation-rotation motions. The oscillations are shown to occur in general, be the particle in bulk water or close to a solid boundary, and may be periodic or irregular. We provide evidence for two bifurcations between static and oscillating states, at k ≈ 0.33 and k ≈ 3 for oblate and prolate ellipsoids, respectively. Based on a recently developed 2-dimensional ray-optics simulation (Mihiretie et al., EPL 100, 48005 (2012)), we propose a simple model that allows understanding the physical origin of the oscillations.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

Supplementary material

10189_2014_84_MOESM1_ESM.pdf (315 kb)
Supplementary material, approximately 315 KB.
10189_2014_84_MOESM2_ESM.pdf (2.4 mb)
Supplementary material, approximately 2.43 MB.
10189_2014_84_MOESM3_ESM.pdf (196 kb)
Supplementary material, approximately 196 KB.
10189_2014_84_MOESM4_ESM.pdf (1.8 mb)
Supplementary material, approximately 1.76 MB.

References

  1. 1.
    A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    A. Ashkin, Optical trapping and manipulation of neutral particles using lasers (World Scientific, London, 2006)Google Scholar
  3. 3.
    G. Roosen, C. Imbert, Phys. Lett. A 59, 6 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    A. Ashkin et al., Opt. Lett. 11, 288 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    K.C. Neuman, S.M. Block, Rev. Sci. Instrum. 75, 2787 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    A. Jonáš, P. Zemánek, Electrophoresis 29, 4813 (2008)CrossRefGoogle Scholar
  7. 7.
    G. Roosen, PhD thesis, University Paris XI (1978)Google Scholar
  8. 8.
    T.N. Buican et al., Proc. SPIE 1063, 190 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Vossen et al., Rev. Sci. Instrum. 75, 2960 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    P.J. Rodrigo, V.R. Daria, J. Glückstad, J. Opt. Lett. 29, 2270 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    P.J. Rodrigo et al., Opt. Express 13, 6899 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    P. Kraikivski, B. Pouligny, R. Dimova, Rev. Sci. Instrum. 77, 113703 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    K.T. Gahagan, G.A. Swartzlander Jr., Opt. Lett. 21, 827 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    K.T. Gahagan, G.A. Swartzlander Jr., J. Opt. Soc. Am. B 15, 524 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    J. Arlt, M.J. Padgett, Opt. Lett. 25, 191 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    V.G. Shvedov, Opt. Express 19, 17350 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    C. Alpmann et al., Appl. Phys. Lett. 100, 111101 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    P.H. Jones, O.M. Maragò, E.P.J. Stride, J. Opt. A: Pure Appl. Opt. 9, S278 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    S.H. Simpson, S. Hanna, J. Opt. Soc. Am. A 27, 1255 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J.N. Wilking, T.G. Mason, EPL 81, 58005 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A. Neves et al., Opt. Express 18, 822 (2010)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    P.J. Pauzauskie et al., Nat. Mater. 5, 97 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    A. Van der Horst et al., Opt. Express 15, 11629 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    J. Plewa, Opt. Express 12, 1978 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    O.M. Maragò et al., Nat. Nanotechnol. 8, 807 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    M.E.J. Friese et al., Appl. Phys. Lett. 78, 547 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    P.B. Bareil, Y. Sheng, Opt. Express 18, 26388 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    S.H. Simpson, S. Hanna, J. Opt. Soc. Am. A 28, 850 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    R.C. Gauthier, J. Opt. Soc. Am. B 14, 3323 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    R.C. Gauthier, M. Ashman, C.P. Grover, Appl. Opt. 38, 4861 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    S.H. Simpson, S. Hanna, J. Opt. Soc. Am. A 24, 430 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    S.H. Simpson, S. Hanna, Phys. Rev. A 84, 053808 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    H. Sosa-Martínez, J.C. Gutiérrez-Vega, J. Opt. Soc. Am. B 26, 2109 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    F. Borghese et al., Phys. Rev. Lett. 100, 163903 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Cao et al., Opt. Express 20, 12987 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    M. Rodriguez-Otazo et al., Appl. Opt. 48, 2720 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    T. Imasaka et al., Anal. Chem. 67, 1763 (1995)CrossRefGoogle Scholar
  38. 38.
    C.B. Chang et al., Opt. Express 20, 24068 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Z. Cheng, P.M. Chaikin, T.G. Mason, Phys. Rev. Lett. 89, 108303 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Cheng, T.G. Mason, P.M. Chaikin, Phys. Rev. E 68, 051404 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    S.C. Grover, R.C. Gauthier, A.G. Skirtach, Opt. Express 7, 533 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    A. Ashkin, J. Biophys. 61, 569 (1992)CrossRefGoogle Scholar
  43. 43.
    S.H. Simpson, S. Hanna, Phys. Rev. E 82, 031141 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    B.M. Mihiretie, P. Snabre, J.-C. Loudet, B. Pouligny, EPL 100, 48005 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    C.C. Ho et al., Colloid Polym. Sci. 271, 469 (1993)CrossRefGoogle Scholar
  46. 46.
    J.A. Champion, Y.K. Katare, S. Mitragotri, Proc. Natl. Acad. Sci. U.S.A. 104, 11901 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    S.M. Block, Optical Tweezers: A New Tool for Biophysics, in Noninvasive Techniques in Cell Biology, edited by B.H. Satir (Wiley-Liss, New York, 1990) pp. 375-402Google Scholar
  48. 48.
    R. Hegger, H. Kantz, T. Schreiber, Chaos 9, 413 (1999)ADSCrossRefMATHGoogle Scholar
  49. 49.
    J.-C. Loudet et al., Phys. Rev. Lett. 94, 018301 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    D.M. Kaz et al., Nat. Mater. 11, 138 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    T.F. Quatieri, Discrete-Time Speech Signal Processing: Principle and Practice (Prentice Hall PTR, 2002)Google Scholar
  52. 52.
    J.-C. Loudet, B.M. Mihiretie, B. Pouligny, Eur. Phys. J. E 37, 125 (2014)CrossRefGoogle Scholar
  53. 53.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer, Dordrecht, 1991)Google Scholar
  54. 54.
    Y. Han et al., Phys. Rev. E 80, 011403 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    R. Rosen, Dynamical System Theory in Biology, Vol. 1 (Wiley-Interscience, 1970)Google Scholar
  56. 56.
    J.M.T. Thompson, H.B. Stewart, Nonlinear Dynamics and Chaos (John Wiley & Sons, 1986)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • B. M. Mihiretie
    • 1
  • P. Snabre
    • 1
  • J. -C. Loudet
    • 1
  • B. Pouligny
    • 1
  1. 1.CNRS, Centre de Recherche Paul PascalUniversité de BordeauxPessacFrance
  2. 2.Department of PhysicsUniversity of GothenburgGothenburgFrance

Personalised recommendations