Skip to main content
Log in

Arching during the segregation of two-dimensional tapped granular systems: Mixtures versus intruders

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We present numerical simulations of binary mixtures of granular disks subjected to tapping. We consider the size segregation process in terms of the arches formed by small and big particles. Although arching has been proposed as one of the chief mechanisms that determines size segregation in non-convecting systems, there is no direct data on arching to support the existing proposals. The pseudo-dynamic approach chosen for this work allows for a straightforward identification of arches in the bulk of the column. We find that, indeed, arch formation and breakage are crucial to the segregation process. Our results show that the presence of large particles induce the formation of more arches than found in mono-sized samples. However, tapping leads to the progressive breakage of big arches where large particles are involved as the segregation process takes place. Interestingly, isolated intruders may or may not rise under tapping depending not only on the size ratio (as it is well known) but also on the degree of ordering of the environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kudrolli, Rep. Prog. Phys. 67, 209 (2004).

    Article  ADS  Google Scholar 

  2. K.E. Daniels, M. Schröter, New J. Phys. 15, 035017 (2013).

    Article  Google Scholar 

  3. M. Pica Ciamarra, M.D. De Vizia, A. Fierro, M. Tarzia, A. Coniglio, M. Nicodemi, Phys. Rev. Lett. 96, 058001 (2006).

    Article  ADS  Google Scholar 

  4. J. Duran, J. Rajchenbach, E. Clément, Phys. Rev. Lett. 70, 2431 (1993).

    Article  ADS  Google Scholar 

  5. J. Duran, T. Mazozi, E. Clément, J. Rajchenbach, Phys. Rev. E 50, 5138 (1994).

    Article  ADS  Google Scholar 

  6. A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Jullien, P. Meakin, A. Pavlovitch, Phys. Rev. Lett. 69, 640 (1992).

    Article  ADS  Google Scholar 

  8. G.C. Barker, A. Mehta, Europhys. Lett. 29, 61 (1995).

    Article  ADS  Google Scholar 

  9. G.C. Barker, Anita Mehta, M.J. Grimson, Phys. Rev. Lett. 70, 2194 (1993).

    Article  ADS  Google Scholar 

  10. J.B. Knight, H.M. Jaeger, S.R. Nagel, Phys. Rev. Lett. 70, 3728 (1993).

    Article  ADS  Google Scholar 

  11. R. Jullien, P. Meakin, A. Pavlovitch, Europhys. Lett. 22, 523 (1993).

    Article  ADS  Google Scholar 

  12. A. Saez, F. Vivanco, F. Melo, Phys. Rev. E 72, 021307 (2005).

    Article  ADS  Google Scholar 

  13. A. Mehta, G.C. Barker, Phys. Rev. Lett. 67, 394 (1991).

    Article  ADS  Google Scholar 

  14. S.S. Manna, H.J. Herrmann, Eur. Phys. J. E 1, 341 (2000).

    Article  Google Scholar 

  15. L.A. Pugnaloni, M.G. Valluzi, L.G. Valluzzi, Phys. Rev. E 73, 051302 (2006).

    Article  ADS  Google Scholar 

  16. L.A. Pugnaloni, M. Mizrahi, C.M. Carlevaro, F. Vericat, Phys. Rev. E 78, 051305 (2008).

    Article  ADS  Google Scholar 

  17. R. Arévalo, D. Maza, L.A. Pugnaloni, Phys. Rev. E 74, 021303 (2006).

    Article  ADS  Google Scholar 

  18. C.M. Carlevaro, L.A. Pugnaloni, Eur. Phys. J. E 35, 44 (2012).

    Article  Google Scholar 

  19. Y.X. Cao, B. Chakrabortty, G.C. Barker, A. Mehta, Y.J. Wang, EPL 102, 24004 (2013).

    Article  ADS  Google Scholar 

  20. M.C. Jenkins, M.D. Haw, G.C. Barker, W.C.K. Poon, S.U. Egelhaaf, Phys. Rev. Lett. 107, 038302 (2011).

    Article  ADS  Google Scholar 

  21. M.A. Aguirre, L.A. Pugnaloni, T. Divoux, J.G. Grande, in: Powders and Grains 2009, Proceedings of the 6th International Conference on Micromechanics of Granular Media, edited by M. Nakagawa, S. Luding (AIP, 2009) pp. 227.

  22. L.A. Pugnaloni, G.C. Barker, A. Mehta, Adv. Complex Syst. 4, 289 (2001).

    Article  MATH  Google Scholar 

  23. L.A. Pugnaloni, G.C. Barker, Physica A 337, 428 (2004).

    Article  ADS  Google Scholar 

  24. R.O. Uñac, A.M. Vidales, L.A. Pugnaloni, Granular Matter 11, 371 (2009).

    Article  MATH  Google Scholar 

  25. A. Garcimartín, I. Zuriguel, L.A. Pugnaloni, A. Janda, Phys. Rev. E 82, 031306 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Pugnaloni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uñac, R.O., Benito, J.G., Vidales, A.M. et al. Arching during the segregation of two-dimensional tapped granular systems: Mixtures versus intruders. Eur. Phys. J. E 37, 117 (2014). https://doi.org/10.1140/epje/i2014-14117-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14117-y

Keywords

Navigation