Skip to main content

Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity

Abstract

Phase separation has important implications for the mechanical, thermal, and electrical properties of materials. Weightless conditions prevent buoyancy and sedimentation from affecting the dynamics of phase separation and the morphology of the domains. In our experiments, sulfur hexafluoride (SF6) was initially heated about 1K above its critical temperature under microgravity conditions and then repeatedly quenched using temperature steps, the last one being of 3.6 mK, until it crossed its critical temperature and phase-separated into gas and liquid domains. Both full view (macroscopic) and microscopic view images of the sample cell unit were analyzed to determine the changes in the distribution of liquid droplet diameters during phase separation. Previously, dimple coalescences were only observed in density-matched binary liquid mixture near its critical point of miscibility. Here we present experimental evidences in support of dimple coalescence between phase-separated liquid droplets in pure, supercritical, fluids under microgravity conditions. Although both liquid mixtures and pure fluids belong to the same universality class, both the mass transport mechanisms and their thermophysical properties are significantly different. In supercritical pure fluids the transport of heat and mass are strongly coupled by the enthalpy of condensation, whereas in liquid mixtures mass transport processes are purely diffusive. The viscosity is also much smaller in pure fluids than in liquid mixtures. For these reasons, there are large differences in the fluctuation relaxation time and hydrodynamics flows that prompted this experimental investigation. We found that the number of droplets increases rapidly during the intermediate stage of phase separation. We also found that above a cutoff diameter of about 100 microns the size distribution of droplets follows a power law with an exponent close to −2 , as predicted from phenomenological considerations.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. W. John Cahn, E. John Hilliard, J. Chem. Phys. 29, 258 (1958).

    Article  Google Scholar 

  2. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 31, 688 (1959).

    Article  ADS  Google Scholar 

  3. K. Binder, Spinodal Decomposition, Vol. 5, Sect. 7, Phase Transformations in Materials (VCH Verlagsgesellschaft, Weinheim, 1991) pp. 405–471.

  4. D. Fenistein, D. Bonn, S. Rafai, G.H. Wegdam, J. Meunier, A.O. Parry, M.M. Telo da Gama, Phys. Rev. Lett. 89, 096101 (2002).

    Article  ADS  Google Scholar 

  5. P. Guenoun, D. Beysens, M. Robert, Phys. Rev. Lett. 65, 2406 (1990).

    Article  ADS  Google Scholar 

  6. Reinhard Lipowsky, David A. Huse, Phys. Rev. Lett. 57, 353 (1986).

    Article  ADS  Google Scholar 

  7. Ullrich Steiner, Jacob Klein, Phys. Rev. Lett. 77, 2526 (1996).

    Article  ADS  Google Scholar 

  8. H. Tanaka, T. Araki, Europhys. Lett. 51, 154 (2000).

    Article  ADS  Google Scholar 

  9. Daniel Bonn, Emanuel Bertrand, Jacques Meunier, Ralf Blossey, Phys. Rev. Lett. 84, 4661 (2000).

    Article  ADS  Google Scholar 

  10. D.S. Martula, T. Hasegawa, D.R. Lloyd, R.T. Bonnecaze, J. Colloid Interface Sci. 232, 241 (2000).

    Article  Google Scholar 

  11. D.S. Martula, D.R. Lloyd, R.T. Bonnecaze, Int. J. Multiphase Flow 29, 1265 (2003).

    Article  MATH  Google Scholar 

  12. D. Beysens, Y. Garrabos, Physica A 281, 361 (2000).

    Article  ADS  Google Scholar 

  13. Andrew Cumming, Pierre Wiltzius, Frank S. Bates, Jeffrey H. Rosedale, Phys. Rev. A 45, 885 (1992).

    Article  ADS  Google Scholar 

  14. Celeste Sagui, Dean Stinson OGorman, Martin Grant, Scanning Microsc. 12, 3 (1998).

    Google Scholar 

  15. Celeste Sagui, Martin Grant, Phys. Rev. E 59, 4175 (1999).

    Article  ADS  Google Scholar 

  16. Vadim S. Nikolayev, Daniel Beysens, Patrick Guenoun, Phys. Rev. Lett. 76, 3144 (1996).

    Article  ADS  Google Scholar 

  17. D. Beysens, P. Guenoun, P. Sibille, A. Kumar, Phys. Rev. E 50, 1299 (1994).

    Article  ADS  Google Scholar 

  18. D.A. Beysens, Physica A 239, 329 (1997).

    Article  ADS  Google Scholar 

  19. A. Oprisan, J.J. Hegseth, G.R. Smith, Carole Lecoutre, Yves Garrabos, Daniel A. Beysens, Phys. Rev. E 84, 021202 (2011).

    Article  ADS  Google Scholar 

  20. I.B. Bazhlekov, A.K. Chesters, F.N. van de Vosse, Int. J. Multiphase Flow 26, 445 (2000).

    Article  MATH  Google Scholar 

  21. K.A Burrill, D.R Woods, J. Colloid Interface Sci. 42, 15 (1973).

    Article  Google Scholar 

  22. Q. Deng, A.V. Anilkumar, T.G. Wang, J. Fluid Mech. 578, 119 (2007).

    Article  MATH  ADS  Google Scholar 

  23. D.S. Dimitrov, I.B. Ivanov, J. Colloid Interface Sci. 64, 096101 (1978).

    Article  Google Scholar 

  24. Derek Y.C. Chan, Evert Klaseboerc, Rogerio Manicac, Soft Matter 5, 2858 (2009).

    Article  ADS  Google Scholar 

  25. A.K. Chesters, Chem. Engin. Res. Design 69, 259 (1991).

    Google Scholar 

  26. Y.T. Hu, D.J. Pine, L. Gary Leal, Phys. Fluids 12, 484 (2000).

    Article  MATH  ADS  Google Scholar 

  27. R. Manica, J.N. Connor, S.L. Carnie, R.G. Horn, D.Y.C. Chan, Langmuir 23, 626 (2007).

    Article  Google Scholar 

  28. R. Manica, E. Klaseboer, D.Y.C. Chan, Soft Matter 4, 1613 (2008).

    Article  ADS  Google Scholar 

  29. M.A. Rother, A.Z. Zinchenko, R.H. Davis, J. Fluid Mech. 346, 117 (1997).

    Article  MATH  ADS  Google Scholar 

  30. John. R. Saylor, Garrett D. Bounds, AIChE J. 58, 3841 (2012).

    Article  Google Scholar 

  31. Y. Yoon, F. Baldessari, H.D. Ceniceros, L.G. Leal, Phys. Fluids 19, 102102 (2007).

    Article  ADS  Google Scholar 

  32. V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.C. Desplat, P. Bladon, J. Fluid Mech. 440, 147 (2001).

    Article  MATH  ADS  Google Scholar 

  33. A. Oprisan, S.A. Oprisan, J.J. Hegseth, Y. Garrabos, C. Lecoutre-Chabot, D. Beysens, Phys. Rev. E 77, 051118 (2008).

    Article  ADS  Google Scholar 

  34. P. Guenoun, R. Gastaud, F. Perrot, D. Beysens, Phys. Rev. A 36, 4876 (1987).

    Article  ADS  Google Scholar 

  35. D. Beysens, P. Guenoun, F. Perrot, J. Phys.: Condens. Matter 2, SA127 (1990).

    ADS  Google Scholar 

  36. J.J. Hegseth, V.S. Nikolayev, D. Beysens, Y. Garrabos, C. Chabot, in Fourth Microgravity Fluid Physics and Transport Phenomena (1998).

  37. John Hegseth, Ana Oprisan, Yves Garrabos, Vadim S. Nikolayev, Carole Lecoutre-Chabot, Daniel Beysens, Phys. Rev. E 72, 031602 (2005).

    Article  ADS  Google Scholar 

  38. C. Lecoutre, Y. Garrabos, E. Georgin, F. Palencia, D. Beysens, Int. J. Thermophys. 30, 810 (2009).

    Article  ADS  Google Scholar 

  39. A. Oprisan Fluctuations, Phase Separation and Wetting Films near Liquid-Gas Critical Point, Thesis, University of New Orleans (2006).

  40. A.M. Kamp, A.K. Chesters, C. Colin, J. Fabre, Int. J. Multiphase Flow 27, 1363 (2001).

    Article  MATH  Google Scholar 

  41. Catherine Colin, Xavier Riou, Jean Fabre, Micrograv. Sci. Technol. 20, 243 (2008).

    Article  Google Scholar 

  42. J. Kamp, S. Nachtigall, S. Maa, M. Kraume, Czas. Tech. M 109, 113 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Oprisan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oprisan, A., Oprisan, S.A., Hegseth, J.J. et al. Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity. Eur. Phys. J. E 37, 85 (2014). https://doi.org/10.1140/epje/i2014-14085-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14085-2

Keywords

  • Soft Matter: Interfacial Phenomena and Nanostructured Surfaces