Skip to main content
Log in

Spatiotemporal correlations between plastic events in the shear flow of athermal amorphous solids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The slow flow of amorphous solids exhibits striking heterogeneities: swift localised particle rearrangements take place in the midst of a more or less homogeneously deforming medium. Recently, experimental as well as numerical work has revealed spatial correlations between these flow heterogeneities. Here, we use molecular dynamics (MD) simulations to characterise the rearrangements and systematically probe their correlations both in time and in space. In particular, these correlations display a four-fold azimuthal symmetry characteristic of shear stress redistribution in an elastic medium and we unambiguously detect their increase in range with time. With increasing shear rate, correlations become shorter-ranged. In addition, we study a coarse-grained model motivated by the observed flow characteristics and challenge its predictions directly with the MD simulations. While the model captures both macroscopic and local properties rather satisfactorily, the agreement with respect to the spatiotemporal correlations is at most qualitative. The discrepancies provide important insight into relevant physics that is missing in all related coarse-grained models that have been developed for the flow of amorphous materials so far, namely the finite shear wave velocity and the impact of elastic heterogeneities on stress redistribution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Argon, H. Kuo, Mater. Sci. Eng. 39, 101 (1979).

    Article  Google Scholar 

  2. P. Schall, D.A. Weitz, F. Spaepen, Science 318, 1895 (2007).

    Article  ADS  Google Scholar 

  3. F. Shimizu, S. Ogata, J. Li, Acta Mater. 54, 4293 (2006).

    Article  Google Scholar 

  4. A. Furukawa, H. Tanaka, Nature Mater. 8, 601 (2009).

    Article  ADS  Google Scholar 

  5. M. Leocmach, C. Perge, T. Divoux, S. Manneville, arXiv:1401.8234 (2014).

  6. D. Bonamy, E. Bouchaud, Phys. Rep. 498, 1 (2011).

    Article  ADS  Google Scholar 

  7. V. Chikkadi, S. Mandal, B. Nienhuis, D. Raabe, F. Varnik, P. Schall, EPL 100, 56001 (2012).

    Article  ADS  Google Scholar 

  8. S. Mandal, V. Chikkadi, B. Nienhuis, D. Raabe, P. Schall, F. Varnik, Phys. Rev. E 88, 022129 (2013).

    Article  ADS  Google Scholar 

  9. F. Varnik, S. Mandal, V. Chikkadi, D. Denisov, P. Olsson, D. Vågberg, D. Raabe, P. Schall, Phys. Rev. E 89, 040301 (2014).

    Article  ADS  Google Scholar 

  10. J.D. Eshelby, Proc. R. Soc. A: Math. Phys. Eng. Sci. 241, 376 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. G. Picard, A. Ajdari, F. Lequeux, L. Bocquet, Eur. Phys. J. E 15, 371 (2004).

    Article  Google Scholar 

  12. A. Widmer-Cooper, H. Perry, P. Harrowell, D.R. Reichman, Nat. Phys. 4, 711 (2008).

    Article  Google Scholar 

  13. M. Tsamados, A. Tanguy, C. Goldenberg, J.L. Barrat, Phys. Rev. E 80, 026112 (2009).

    Article  ADS  Google Scholar 

  14. C. Brito, M. Wyart, J. Chem. Phys. 131, 024504 (2009).

    Article  ADS  Google Scholar 

  15. A. Tanguy, B. Mantisi, M. Tsamados, EPL 90, 16004 (2010).

    Article  ADS  Google Scholar 

  16. M.L. Manning, A.J. Liu, Phys. Rev. Lett. 107, 108302 (2011).

    Article  ADS  Google Scholar 

  17. J. Chattoraj, A. Lemaitre, Phys. Rev. Lett. 111, 066001 (2013).

    Article  ADS  Google Scholar 

  18. R. Benzi, M. Sbragaglia, P. Perlekar, M. Bernaschi, S. Succi, F. Toschi, to be published in Soft Matter (2014).

  19. M. Gross, T. Krueger, F. Varnik, Soft Matter 10, 4360 (2014).

    Article  Google Scholar 

  20. M. Falk, J. Langer, Phys. Rev. E 57, 7192 (1998).

    Article  ADS  Google Scholar 

  21. V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, P. Schall, Phys. Rev. Lett. 107, 198303 (2011).

    Article  ADS  Google Scholar 

  22. V. Chikkadi, P. Schall, Phys. Rev. E 85, 031402 (2012).

    Article  ADS  Google Scholar 

  23. N.C. Keim, P.E. Arratia, Phys. Rev. Lett. 112, 028302 (2014).

    Article  ADS  Google Scholar 

  24. A. Nicolas, J.L. Barrat, Faraday Disc. 167, 567 (2013).

    Article  Google Scholar 

  25. A. Nicolas, K. Martens, L. Bocquet, J.L. Barrat, Soft Matter 10, 4648 (2014).

    Article  Google Scholar 

  26. B. Doliwa, A. Heuer, Phys. Rev. E 67, 031506 (2003).

    Article  ADS  Google Scholar 

  27. C. Maloney, A. Lemaitre, Phys. Rev. Lett. 93, 016001 (2004).

    Article  ADS  Google Scholar 

  28. A. Lemaitre, Phys. Rev. Lett. 103, 065501 (2009).

    Article  ADS  Google Scholar 

  29. J. Chattoraj, C. Caroli, A. Lemaitre, Phys. Rev. Lett. 105, 266001 (2010).

    Article  ADS  Google Scholar 

  30. J. Chattoraj, C. Caroli, A. Lemaitre, Phys. Rev. E 84, 011501 (2011).

    Article  ADS  Google Scholar 

  31. G. Picard, A. Ajdari, F. Lequeux, L. Bocquet, Phys. Rev. E 71, 010501 (2005).

    Article  ADS  Google Scholar 

  32. K. Martens, L. Bocquet, J.L. Barrat, Soft Matter 8, 4197 (2012).

    Article  ADS  Google Scholar 

  33. T. Divoux, C. Barentin, S. Manneville, Soft Matter 7, 8409 (2011).

    Article  ADS  Google Scholar 

  34. B.P. Tighe, E. Woldhuis, J.J.C. Remmers, W. van Saarloos, M. van Hecke, Phys. Rev. Lett. 105, 088303 (2010).

    Article  ADS  Google Scholar 

  35. D. Vågberg, P. Olsson, S. Teitel, arXiv:1312.5158 (2013).

  36. G. Debregeas, H. Tabuteau, J.M. Di Meglio, Phys. Rev. Lett. 87, 178305 (2001).

    Article  ADS  Google Scholar 

  37. F. Puosi, J. Rottler, J.L. Barrat, Phys. Rev. E 89, 042302 (2014).

    Article  ADS  Google Scholar 

  38. T. Idema, J.O. Dubuis, L. Kang, M.L. Manning, P.C. Nelson, T.C. Lubensky, A.J. Liu, arXiv:1304.4025 (2013).

  39. D. Rodney, A. Tanguy, D. Vandembroucq, Model. Simul. Mater. Sci. Eng. 19, 083001 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Nicolas.

Electronic supplementary material

Supplementary material, approximately 4.0 MB.

Supplementary material, approximately 3.20 MB.

Supplementary material, approximately 4.80 MB.

Supplementary material, approximately 4.12 MB.

Supplementary material, approximately 3.64 MB.

Supplementary material, approximately 3.03 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolas, A., Rottler, J. & Barrat, JL. Spatiotemporal correlations between plastic events in the shear flow of athermal amorphous solids. Eur. Phys. J. E 37, 50 (2014). https://doi.org/10.1140/epje/i2014-14050-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14050-1

Keywords

Navigation