Skip to main content

Horizontal deflection of single particle in a paramagnetic fluid


This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility.

Graphical abstract

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Svoboda, Magnetic Techniques for the Treatment of Materials (Kluver Academic Publishers, 2004).

  2. 2.

    K. Yokoyama, T. Oka, H. Okada, Y. Fujine, A. Chiba, K. Noto, IEEE Trans. Appl. Supercond. 13, 1592 (2003).

    Article  Google Scholar 

  3. 3.

    R.D. Doctor, C.D. Livengood,, pp. 228–235.

  4. 4.

    H. Okada, H. Okuyama, M. Uda, N. Hirota, IEEE Trans. Appl. Supercond. 16, 1084 (2006).

    Article  Google Scholar 

  5. 5.

    I. Ihara, K. Kanamura, E. Shimada, T. Watanabe, IEEE Trans. Appl. Supercond. 14, 1558 (2004).

    Article  Google Scholar 

  6. 6.

    D. Ito, K. Miura, T. Ichimura, I. Ihara, T. Watanabe, IEEE Trans. Appl. Supercond. 14, 1551 (2004).

    Article  Google Scholar 

  7. 7.

    H. Okada, Y. Kudo, H. Nakazawa A. Chiba, K. Mitsuhashi, T. Ohara, W. Hitoshi, IEEE Trans. Appl. Supercond. 14, 1576 (2004).

    Article  Google Scholar 

  8. 8.

    T. Hartikainen, J. Nikkanenand, R. Mikkonen, IEEE Trans. Appl. Supercond. 15, 2336 (2005).

    Article  Google Scholar 

  9. 9.

    M. Mothokawa, M. Hamai, T. Sato, I. Mogi, S. Awaji, K. Watanabe, N. Kitamura, M. Makihara, Physica B 294-295, 729 (2001).

    ADS  Article  Google Scholar 

  10. 10.

    W. Braunbeck, Z. Phys. 112, 735 (1939).

    Google Scholar 

  11. 11.

    E. Baeugnon, R. Tournier, Nature 349, 470 (1991).

    ADS  Article  Google Scholar 

  12. 12.

    A.K. Geim, M.D. Simon, M.I. Boamfa, L.O. Heflinger, Nature 400, 323 (1999).

    ADS  Article  Google Scholar 

  13. 13.

    M.V. Berry, A.K. Geim, Eur. J. Phys. 18, 307 (1997).

    Article  MathSciNet  Google Scholar 

  14. 14.

    Y. Ikezoe, T. Kaihatsu, S. Sakae, H. Uetake, N. Hirota, K. Kitazawa, Energy Convers. Manage. 43, 417 (2002).

    Article  Google Scholar 

  15. 15.

    P.A. Dunne, J. Hilton, J.M.D. Coey, J. Magn. & Magn. Mater. 316, 273 (2007).

    ADS  Article  Google Scholar 

  16. 16.

    N. Hirota, M. Kurashige, M. Iwasaka, M. Ikehata, H. Uetake, T. Takayama, H. Nakamura, Y. Ikezoe, S. Ueno, K. Kitazawa, Physica B 346, 267 (2004).

    ADS  Article  Google Scholar 

  17. 17.

    R.E. Rosenweig, Nature 210, 613 (1966).

    ADS  Article  Google Scholar 

  18. 18.

    R.E. Rosenweig, AIAA J. 4, 1751 (1966).

    ADS  Article  Google Scholar 

  19. 19.

    R.E. Rosenweig, Ferrohydrodynamics (Dover publications, New York, 1997) ISBN 0-486-67834-2.

  20. 20.

    L. Mir, C. Simard, S.D. Grana, in Proceedings of the 3rd Urban Technol. Conf. Tech. Display, Boston (USA), AIAA Paper no. 73-959 (1973).

  21. 21.

    T. Fujita, in Magnetic Fluids and Applications Handbook, edited by B. Berkovski, V. Bashtovoy (Begell House, Inc., New York, 1996).

  22. 22.

    J. Svoboda, Phys. Separ. Sci. Eng. 13, 127 (2004).

    Article  Google Scholar 

  23. 23.

    A.T. Catherall, L. Eaves, P.J. King, S. Booth, Nature 422, 579 (2003).

    ADS  Article  Google Scholar 

  24. 24.

    A.T. Catherall, P. Lopez-Alcaraz, K.A. Benedict, P.J. King, L. Eaves, New J. Phys. 7, 118 (2005).

    ADS  Article  Google Scholar 

  25. 25.

    P. Lopez-Alcaraz, A.T. Catherall, R.J.A. Hill, M.C. Leaper, M. Swift, P.J. King, Eur. Phys. J. E 24, 145 (2007).

    Article  Google Scholar 

  26. 26.

    U. Andres, Miner. Sci. Engin. 7, 99 (1975).

    Google Scholar 

  27. 27.

    M. Suwa, H. Watarai, Anal. Chem. 74, 5027 (2002).

    Article  Google Scholar 

  28. 28.

    Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, II/16, Diamagnetic Susceptibility (Springer-Verlag, Heidelberg, 1986).

  29. 29.

    G.P. Arrighini, M. Maestro, R. Moccia, J. Chem. Phys. 49, 882 (1968).

    ADS  Article  Google Scholar 

  30. 30.

    Y.J. Choi, K.L. McCarthy, M.J. McCarthy, Comput. Electron Agr. 47, 59 (2005).

    Article  Google Scholar 

  31. 31.

    L. Pangione, J.B. Lister, Fusion Eng. Des. 83, 545 (2008).

    Article  Google Scholar 

  32. 32.

    C.L. Lim, N.B. Jones, S.K. Spurgeon, J.J.A. Scott, Simul. Modell. Pract. Theory 11, 91 (2003).

    Article  Google Scholar 

  33. 33.

    Q.X. Feng, Q. Feng, K. Takeshi, Nucl. Sci. Technol. 19, 282 (2008).

    Google Scholar 

  34. 34.

    M.D Simon, A.K. Geim, J. Appl. Phys. 87, 6200 (2000).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yi, X., Leaper, M. et al. Horizontal deflection of single particle in a paramagnetic fluid. Eur. Phys. J. E 37, 47 (2014).

Download citation


  • Flowing Matter: Granular Matter