Horizontal deflection of single particle in a paramagnetic fluid

Regular Article


This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility.

Graphical abstract


Flowing Matter: Granular Matter 


  1. 1.
    J. Svoboda, Magnetic Techniques for the Treatment of Materials (Kluver Academic Publishers, 2004).Google Scholar
  2. 2.
    K. Yokoyama, T. Oka, H. Okada, Y. Fujine, A. Chiba, K. Noto, IEEE Trans. Appl. Supercond. 13, 1592 (2003).CrossRefGoogle Scholar
  3. 3.
    R.D. Doctor, C.D. Livengood, http://www.p2pays.org/ref/14/13875.pdf, pp. 228–235.
  4. 4.
    H. Okada, H. Okuyama, M. Uda, N. Hirota, IEEE Trans. Appl. Supercond. 16, 1084 (2006).CrossRefGoogle Scholar
  5. 5.
    I. Ihara, K. Kanamura, E. Shimada, T. Watanabe, IEEE Trans. Appl. Supercond. 14, 1558 (2004).CrossRefGoogle Scholar
  6. 6.
    D. Ito, K. Miura, T. Ichimura, I. Ihara, T. Watanabe, IEEE Trans. Appl. Supercond. 14, 1551 (2004).CrossRefGoogle Scholar
  7. 7.
    H. Okada, Y. Kudo, H. Nakazawa A. Chiba, K. Mitsuhashi, T. Ohara, W. Hitoshi, IEEE Trans. Appl. Supercond. 14, 1576 (2004).CrossRefGoogle Scholar
  8. 8.
    T. Hartikainen, J. Nikkanenand, R. Mikkonen, IEEE Trans. Appl. Supercond. 15, 2336 (2005).CrossRefGoogle Scholar
  9. 9.
    M. Mothokawa, M. Hamai, T. Sato, I. Mogi, S. Awaji, K. Watanabe, N. Kitamura, M. Makihara, Physica B 294-295, 729 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    W. Braunbeck, Z. Phys. 112, 735 (1939).Google Scholar
  11. 11.
    E. Baeugnon, R. Tournier, Nature 349, 470 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    A.K. Geim, M.D. Simon, M.I. Boamfa, L.O. Heflinger, Nature 400, 323 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    M.V. Berry, A.K. Geim, Eur. J. Phys. 18, 307 (1997).CrossRefMathSciNetGoogle Scholar
  14. 14.
    Y. Ikezoe, T. Kaihatsu, S. Sakae, H. Uetake, N. Hirota, K. Kitazawa, Energy Convers. Manage. 43, 417 (2002).CrossRefGoogle Scholar
  15. 15.
    P.A. Dunne, J. Hilton, J.M.D. Coey, J. Magn. & Magn. Mater. 316, 273 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    N. Hirota, M. Kurashige, M. Iwasaka, M. Ikehata, H. Uetake, T. Takayama, H. Nakamura, Y. Ikezoe, S. Ueno, K. Kitazawa, Physica B 346, 267 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    R.E. Rosenweig, Nature 210, 613 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    R.E. Rosenweig, AIAA J. 4, 1751 (1966).ADSCrossRefGoogle Scholar
  19. 19.
    R.E. Rosenweig, Ferrohydrodynamics (Dover publications, New York, 1997) ISBN 0-486-67834-2.Google Scholar
  20. 20.
    L. Mir, C. Simard, S.D. Grana, in Proceedings of the 3rd Urban Technol. Conf. Tech. Display, Boston (USA), AIAA Paper no. 73-959 (1973).Google Scholar
  21. 21.
    T. Fujita, in Magnetic Fluids and Applications Handbook, edited by B. Berkovski, V. Bashtovoy (Begell House, Inc., New York, 1996).Google Scholar
  22. 22.
    J. Svoboda, Phys. Separ. Sci. Eng. 13, 127 (2004).CrossRefGoogle Scholar
  23. 23.
    A.T. Catherall, L. Eaves, P.J. King, S. Booth, Nature 422, 579 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    A.T. Catherall, P. Lopez-Alcaraz, K.A. Benedict, P.J. King, L. Eaves, New J. Phys. 7, 118 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    P. Lopez-Alcaraz, A.T. Catherall, R.J.A. Hill, M.C. Leaper, M. Swift, P.J. King, Eur. Phys. J. E 24, 145 (2007).CrossRefGoogle Scholar
  26. 26.
    U. Andres, Miner. Sci. Engin. 7, 99 (1975).Google Scholar
  27. 27.
    M. Suwa, H. Watarai, Anal. Chem. 74, 5027 (2002).CrossRefGoogle Scholar
  28. 28.
    Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, II/16, Diamagnetic Susceptibility (Springer-Verlag, Heidelberg, 1986).Google Scholar
  29. 29.
    G.P. Arrighini, M. Maestro, R. Moccia, J. Chem. Phys. 49, 882 (1968).ADSCrossRefGoogle Scholar
  30. 30.
    Y.J. Choi, K.L. McCarthy, M.J. McCarthy, Comput. Electron Agr. 47, 59 (2005).CrossRefGoogle Scholar
  31. 31.
    L. Pangione, J.B. Lister, Fusion Eng. Des. 83, 545 (2008).CrossRefGoogle Scholar
  32. 32.
    C.L. Lim, N.B. Jones, S.K. Spurgeon, J.J.A. Scott, Simul. Modell. Pract. Theory 11, 91 (2003).CrossRefGoogle Scholar
  33. 33.
    Q.X. Feng, Q. Feng, K. Takeshi, Nucl. Sci. Technol. 19, 282 (2008).Google Scholar
  34. 34.
    M.D Simon, A.K. Geim, J. Appl. Phys. 87, 6200 (2000).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Process and Environmental Research Division, Faculty of EngineeringUniversity of NottinghamNottinghamUK
  2. 2.Research Institute of Sun Yat-Sen University in ShenzhenHi-tech Industrial ParkShenzhenChina
  3. 3.Chemical Engineering and Applied ChemistryAston UniversityBirminghamUK
  4. 4.Faculty of Science and EngineeringUniversity of Nottingham Ningbo ChinaNingboChina

Personalised recommendations