Skip to main content
Log in

Spatio-temporal dynamics of an active, polar, viscoelastic ring

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Constitutive equations for a one-dimensional, active, polar, viscoelastic liquid are derived by treating the strain field as a slow hydrodynamic variable. Taking into account the couplings between strain and polarity allowed by symmetry, the hydrodynamics of an active, polar, viscoelastic body include an evolution equation for the polarity field that generalizes the damped Kuramoto-Sivashinsky equation. Beyond thresholds of the active coupling coefficients between the polarity and the stress or the strain rate, bifurcations of the homogeneous state lead first to stationary waves, then to propagating waves of the strain, stress and polarity fields. I argue that these results are relevant to living matter, and may explain rotating actomyosin rings in cells and mechanical waves in epithelial cell monolayers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Jülicher, K. Kruse, J. Prost, J.F. Joanny, Phys. Rep. 449, 3 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).

    Article  ADS  Google Scholar 

  3. M.C. Marchetti et al., Rev. Mod. Phys. 85, 1143 (2013).

    Article  ADS  Google Scholar 

  4. D. Chen et al., Annu. Rev. Condens. Matter Phys. 1, 301 (2010).

    Article  ADS  Google Scholar 

  5. K. Kruse et al., Phys. Rev. Lett. 92, 078101 (2004).

    Article  ADS  Google Scholar 

  6. K. Kruse et al., Eur. Phys. J. E 16, 5 (2005).

    Article  Google Scholar 

  7. S. Muhuri et al., EPL 78, 48002 (2007).

    Article  ADS  Google Scholar 

  8. L. Giomi et al., Phys. Rev. Lett. 101, 198101 (2008).

    Article  ADS  Google Scholar 

  9. S. Banerjee, T.B. Liverpool, M.C. Marchetti, EPL 96, 58004 (2011).

    Article  ADS  Google Scholar 

  10. C.M. Edwards, U.S. Schwarz, Phys. Rev. Lett. 107, 128101 (2012).

    Article  ADS  Google Scholar 

  11. N. Yoshinaga, P. Marcq, Phys. Biol. 9, 046004 (2012).

    Article  ADS  Google Scholar 

  12. A.C. Callan-Jones, F. Jülicher, New J. Phys. 13, 093027 (2011).

    Article  ADS  Google Scholar 

  13. N. Yoshinaga, J.F. Joanny, J. Prost, P. Marcq, Phys. Rev. Lett. 105, 238103 (2010).

    Article  ADS  Google Scholar 

  14. P. Manneville, The Kuramoto-Sivashinsky equation: a progress report, in Propagation in systems far from equilibrium, edited by J.E. Wesfreid, Vol. 40 of Springer Series in Synergetics (Springer, 1988), pp. 265--280.

  15. H. Brand, H. Pleiner, W. Renz, J. Phys. (Paris) 51, 1065 (1990).

    Article  Google Scholar 

  16. P. Chaikin, T. Lubensky, Principles of condensed matter physics (Cambridge University Press, 1995).

  17. G.R. Dennis, J.J. Hope, M.T. Johnsson, Comput. Phys. Commun. 184, 201 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Misbah, A. Valance, Phys. Rev. E 49, 166 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Brunet, Phys. Rev. E 76, 017204 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  20. R.K. Meyer, U. Aebi, J. Cell Biol. 110, 2013 (1990).

    Article  Google Scholar 

  21. L.P. Cramer et al., J. Cell Biol. 136, 1287 (1997).

    Article  Google Scholar 

  22. L.J. Peterson et al., Mol. Biol. Cell 15, 3497 (2004).

    Article  Google Scholar 

  23. S. Ebrahim et al., Curr. Biol. 23, 731 (2013).

    Article  Google Scholar 

  24. Y. Senju, H. Miyata, J. Biochem. 145, 137 (2009).

    Article  Google Scholar 

  25. A. Kumar et al., Sci. Rep. 4, 3781 (2014).

    ADS  Google Scholar 

  26. U.S. Eggert, T.J. Mitchison, C.M. Field, Annu. Rev. Biochem. 75, 543 (2006).

    Article  Google Scholar 

  27. Y. Asano et al., HFSP J. 3, 194 (2009).

    Article  MathSciNet  Google Scholar 

  28. O. Ilina, P. Friedl, J. Cell Sci. 122, 3203 (2009).

    Article  Google Scholar 

  29. P. Rørth, EMBO Rep. 13, 984 (2012).

    Article  Google Scholar 

  30. M.H. Köpf, L.M. Pismen, Soft Matter 9, 3727 (2012).

    Article  Google Scholar 

  31. R. Farooqui, G. Fenteany, J. Cell Sci. 118, 51 (2005).

    Article  Google Scholar 

  32. M. Reffay et al., Biophys. J. 100, 2566 (2011).

    Article  ADS  Google Scholar 

  33. G.F. Weber, M.A. Bjerke, D.W. Desimone, Dev. Cell 22, 104 (2011).

    Article  Google Scholar 

  34. R.A. Desai et al., J. Cell Sci. 122, 905 (2009).

    Article  Google Scholar 

  35. J. Ranft et al., Proc. Natl. Acad. Sci. U.S.A. 107, 20863 (2010).

    Article  ADS  Google Scholar 

  36. X. Serra-Picamal et al., Nat. Phys. 8, 628 (2012).

    Article  Google Scholar 

  37. D. Bilder, S.L. Haigo, Dev. Cell 22, 12 (2012).

    Article  Google Scholar 

  38. L.Q. Wan et al., Proc. Natl. Acad. Sci. U.S.A. 108, 12295 (2011).

    Article  Google Scholar 

  39. C. Brangwynne et al., In Vitro Cell Dev. Biol. Anim. 36, 563 (2000).

    Article  Google Scholar 

  40. K. Tanner et al., Proc. Natl. Acad. Sci. U.S.A. 109, 1973 (2012).

    Article  ADS  Google Scholar 

  41. J. Toner, Y. Tu, S. Ramaswamy, Ann. Phys. 318, 170 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. A. Ahmadi et al., Phys. Rev. E 74, 061913 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Claessens, M. Bathe, E. Frey, A.R. Bausch, Nat. Mater. 5, 748 (2006).

    Article  ADS  Google Scholar 

  44. D. Strehle et al., Eur. Biophys. J. 40, 93 (2011).

    Article  Google Scholar 

  45. T. Thoresen, M. Lenz, M.L. Gardel, Biophys. J. 100, 2698 (2011).

    Article  ADS  Google Scholar 

  46. S. Köhler, V. Schaller, A.R. Bausch, PLoS One 6, e23798 (2011).

    Article  ADS  Google Scholar 

  47. L. Petitjean et al., Biophys. J. 98, 1790 (2010).

    Article  ADS  Google Scholar 

  48. T.E. Angelini et al., Phys. Rev. Lett. 104, 168104 (2010).

    Article  ADS  Google Scholar 

  49. M. Paniconi, K.R. Elder, Phys. Rev. E 56, 2713 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Marcq.

Additional information

Contribution to the Topical Issue “Irreversible Dynamics: A topical issue dedicated to Paul Manneville” edited by Patrice Le Gal and Laurette S. Tuckerman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcq, P. Spatio-temporal dynamics of an active, polar, viscoelastic ring. Eur. Phys. J. E 37, 29 (2014). https://doi.org/10.1140/epje/i2014-14029-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14029-x

Keywords

Navigation