Dispersions of multi-wall carbon nanotubes in ferroelectric liquid crystals

  • M. Yakemseva
  • I. Dierking
  • N. Kapernaum
  • N. Usoltseva
  • F. Giesselmann
Regular Article


The electro-optic and dielectric properties of ferroelectric liquid crystal-multi-wall carbon nanotube dispersions were investigated with respect to temperature and nanotube concentration. The main physical properties, such as tilt angle, spontaneous polarization, response time, viscosity, and Goldstone-mode relaxation strength and frequency were studied. While all dispersions exhibit the expected temperature dependencies of their physical properties, their dependence on nanotube concentration is still a controversial discussion in literature, with several contradicting reports. For increasing nanotube concentration we observed a decrease in tilt angle, but an increase in spontaneous polarisation, the latter explaining the enhancement of the bilinear coupling coefficient, and the dielectric relaxation strength. Despite the increase in polarization, the electro-optic response times slow down, which suggests an increase of rotational viscosity along the tilt cone. It is anticipated that the latter also accounts for the observed decrease of the Goldstone-mode relaxation frequency for increasing nanotube concentration.

Graphical abstract


Soft Matter: Liquid crystals 


  1. 1.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2001)Google Scholar
  2. 2.
    P.J. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics (Taylor & Francis, London, 1997)Google Scholar
  3. 3.
    S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University Press, Cambridge, 1992)Google Scholar
  4. 4.
    B. Meyer, L. Liebert, L. Strzelecki, P. Keller, J. Phys. (Paris) Lett. 36, L69 (1975)CrossRefGoogle Scholar
  5. 5.
    S.T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, 1999)Google Scholar
  6. 6.
    N.A. Clark, S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    M. Lynch, D. Patrick, Nano Lett. 2, 1197 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    I. Dierking, G. Scalia, P. Morales, D. Leclere, Adv. Mater. 16, 865 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Kumar, H.K. Bisoyi, Angew. Chem. Int. Ed. 46, 1501 (2007)CrossRefGoogle Scholar
  10. 10.
    H.K. Bisoyi, S. Kumar, J. Mater. Chem. 18, 3032 (2008)CrossRefGoogle Scholar
  11. 11.
    H.K. Bisoyi, S. Kumar, J. Ind. Inst. Sci. 89, 101 (2009)Google Scholar
  12. 12.
    J.P.F. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, F. Giesselmann, S. Roth, Phys. Status. Solidi B 243, 3046 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    J. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, S. Roth, F. Giesselmann, Adv. Mater. 19, 359 (2007)CrossRefGoogle Scholar
  14. 14.
    W. Jiang, B. Yu, W. Liu, J. Hao, Langmuir 23, 8549 (2007)CrossRefGoogle Scholar
  15. 15.
    G. Scalia, C. von Bühler, C. Hägele, S. Roth, F. Giesselmann, J.P.F. Lagerwall, Soft Matter 4, 570 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    V. Weiss, R. Thiruvengadathan, O. Regev, Langmuir 22, 854 (2006)CrossRefGoogle Scholar
  17. 17.
    S. Badaire, C. Zakri, M. Maugey, A. Derré, J.N. Barisci, G. Wallace, P. Poulin, Adv. Mater. 13, 1673 (2005)CrossRefGoogle Scholar
  18. 18.
    W. Song, A.H. Windle, Macromolecules 38, 6181 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    J.P.F. Lagerwall, G. Scalia, J. Mater. Chem. 18, 2890 (2008)CrossRefGoogle Scholar
  20. 20.
    I. Dierking, G. Scalia, P. Morales, J. Appl. Phys. 97, 044309 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    I. Dierking, K. Casson, R. Hampson, Jpn. J. Appl. Phys. 47, 6390 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    I. Dierking, S.E. San, Appl. Phys. Lett. 87, 233507 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    F.V. Podgornov, A.M. Suvorova, A.V. Lapanik, W. Haase, Chem. Phys. Lett. 479, 206 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    J. Prakash, A. Chaudhary, D.S. Mehta, A.M. Biradar, Phys. Rev. E 80, 012701 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    P. Arora, A. Mikulko, F. Podgornov, W. Haase, Mol. Cryst. Liq. Cryst. 502, 1 (2009)CrossRefGoogle Scholar
  26. 26.
    R.K. Shukla, K.K. Raina, V. Hamplová, M. Kašpar, A. Bubnov, Phase Trans. 84, 850 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Ghosh, P. Nayek, S.K. Roy, R. Gangopadhyay, M.R. Molla, T.P. Majumder, Eur. Phys. J. E 34, 35 (2011)CrossRefGoogle Scholar
  28. 28.
    S.K. Gupta, A. Kumar, A.K. Srivistava, R. Manohar, J. Non-Cryst. Solids 357, 1822 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    P. Malik, A. Chaudhary, R. Mehra, K.K. Raina, J. Mol. Liq. 165, 7 (2012)CrossRefGoogle Scholar
  30. 30.
    V.N. Vijayakumar, M.L.N.M. Mohan, J. Disp. Sci. Tech. 33, 111 (2012)CrossRefGoogle Scholar
  31. 31.
    K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, E. Kuze, Jpn. J. Appl. Phys. 22, L661 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    A.M. Rao, E. Ritcher, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Science 275, 187 (1997)CrossRefGoogle Scholar
  33. 33.
    M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Carbon 40, 2043 (2002)CrossRefGoogle Scholar
  34. 34.
    B. Zekš, Mol. Cryst. Liq. Cryst. 114, 259 (1984)CrossRefGoogle Scholar
  35. 35.
    T. Carlsson, B. Zekš, A. Levstik, C. Filipic, I. Levstik, R. Blinc, Phys. Rev. A 36, 1484 (1987)ADSCrossRefGoogle Scholar
  36. 36.
    F. Giesselmann, A. Heimann, P. Zugenmaier, Ferroelectrics 200, 237 (1997)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Yakemseva
    • 1
  • I. Dierking
    • 2
  • N. Kapernaum
    • 3
  • N. Usoltseva
    • 1
  • F. Giesselmann
    • 3
  1. 1.Nanomaterials Research InstituteIvanovo State UniversityIvanovoRussia
  2. 2.School of Physics and AstronomyUniversity of ManchesterManchesterUK
  3. 3.Institute of Physical ChemistryUniversity of StuttgartStuttgartGermany

Personalised recommendations