Acoustic characterisation of liquid foams with an impedance tube

  • Juliette Pierre
  • Reine-Marie Guillermic
  • Florence Elias
  • Wiebke Drenckhan
  • Valentin Leroy
Regular Article

Abstract

Acoustic measurements provide convenient non-invasive means for the characterisation of materials. We show here for the first time how a commercial impedance tube can be used to provide accurate measurements of the velocity and attenuation of acoustic waves in liquid foams, as well as their effective “acoustic” density, over the 0.5-6kHz frequency range. We demonstrate this using two types of liquid foams: a commercial shaving foam and “home-made” foams with well-controlled physico-chemical and structural properties. The sound velocity in the latter foams is found to be independent of the bubble size distribution and is very well described by Wood’s law. This implies that the impedance technique may be a convenient way to measure in situ the density of liquid foams. Important questions remain concerning the acoustic attenuation, which is found to be influenced in a currently unpredictible manner by the physico-chemical composition and the bubble size distribution of the characterised foams. We confirm differences in sound velocities in the two types of foams (having the same structural properties) which suggests that the physico-chemical composition of liquid foams has a non-negligible effect on their acoustic properties.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    D. Weaire, S. Hutzler, The Physics of Foams (Clarendon Press, Oxford, 1999).Google Scholar
  2. 2.
    I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Hohler, O. Pitois, A. Saint-Jalmes, Les mousses : structure et dynamique (Belin, 2010).Google Scholar
  3. 3.
    J.F. Allard, N. Atalla, Propagation of Sound in Porous Media (Wiley, 2009).Google Scholar
  4. 4.
    A.S. Dukhin, P.J. Goetz, Adv. Colloid Interface Sci. 92, 73 (2001).CrossRefGoogle Scholar
  5. 5.
    Z.M. Orenbakh, G.A. Shushkov, Acoust. Phys. 39, 63 (1993).ADSGoogle Scholar
  6. 6.
    I. Shreiber, G. Ben-Dor, A. Britan, V. Feklistov, Shock Waves 15, 199 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    A.B. Wood, A Textbook of sound (Bell, London, 1932).Google Scholar
  8. 8.
    V.V Zamashchikov, N.A. Kakutkina, Sov. Phys. Acoust. 37, 248 (1991).Google Scholar
  9. 9.
    N. Mujica, S. Fauve, Phys. Rev. E 66, 021404 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    J. Ding, F.W. Tsaur, A. Lips, A. Akay, Phys. Rev. E 75, 041601 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    I. Ben Salem, R.-M. Guillermic, C. Sample, V. Leroy, A. Saint-Jalmes, B. Dollet, Soft Matter 9, 1194 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    J. Pierre, F. Elias, V Leroy, Ultrasonics 53, 622 (2013).CrossRefGoogle Scholar
  13. 13.
    T.D. Rossing, Springer Handbook of Acoustics (Springer Verlag, 2007).Google Scholar
  14. 14.
    D. Daugelaite, PhD thesis, University of Manitoba (2011).Google Scholar
  15. 15.
    K.C. Symers, Food Chem. 6, 63 (1980).CrossRefGoogle Scholar
  16. 16.
    J. Sauter, VDI-Forschungsheft, 279 (1926).Google Scholar
  17. 17.
    Determination of sound absorption coefficient and impedance in impedance tubes, ISO 10534-2, International Organization for Standardization, Geneva, Switzerland (2002).Google Scholar
  18. 18.
    A.F Seybert, D.F. Ross, J. Acoust. Soc. Am. 61, 1362 (1977).ADSCrossRefGoogle Scholar
  19. 19.
    A. Maestro, W. Drenckhan, E. Rio, R. Hohler, Soft Matter 9, 2531 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    L.M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1960).Google Scholar
  21. 21.
    J.L. Auriault, C. Boutin, C. Geindreau, Homogenization of coupled Phenomena in Heterogenous Media (John Wiley and Sons, 2009).Google Scholar
  22. 22.
    J.L. Auriault, L. Borne, R. Chambon, J. Acoust. Soc. Am. 77, 1641 (1985).ADSCrossRefMATHGoogle Scholar
  23. 23.
    A. Prosperetti, J. Acoust. Soc. Am. 56, 878 (1974).ADSCrossRefGoogle Scholar
  24. 24.
    A. Prosperetti, L.A. Crum, K.W. Commander, J. Acoust. Soc. Am. 83, 502 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    P.C. Waterman, R. Truell, J. Math. Phys. 2, 512 (1961).ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    I.I Goldfarb, I.R. Schreiber, F.I. Vafina, J. Acoust. Soc. Am. 92, 2756 (1992).ADSCrossRefGoogle Scholar
  27. 27.
    I.I Goldfarb, Z. Orenbakh, I.R. Schreiber, F.I. Vafina, Shock Waves 7, 77 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    E. Lorenceau, N. Louvet, F. Rouyer, O. Pitois, Eur. Phys. J. E 28, 293 (2009).CrossRefGoogle Scholar
  29. 29.
    A.L. Lindsay, L.A. Bromley, Indust. Engin. Chem. 42, 1508 (1950).CrossRefGoogle Scholar
  30. 30.
    A.D. Godal, D.J. Durian, J. Colloids Interface Sci. 213, 169 (1999).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juliette Pierre
    • 1
  • Reine-Marie Guillermic
    • 2
  • Florence Elias
    • 1
    • 3
  • Wiebke Drenckhan
    • 2
  • Valentin Leroy
    • 1
  1. 1.Laboratoire MSCUniversité Paris-Diderot, CNRS (UMR 7057)ParisFrance
  2. 2.Laboratoire de Physique des SolidesUniversité Paris-Sud - UMR 8502OrsayFrance
  3. 3.Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations