Is superhydrophobicity robust with respect to disorder?

  • Joël De Coninck
  • François Dunlop
  • Thierry Huillet
Regular Article

Abstract

We consider theoretically the Cassie-Baxter and Wenzel states describing the wetting contact angles for rough substrates. More precisely, we consider different types of periodic geometries such as square protrusions and disks in 2D, grooves and nanoparticles in 3D and derive explicitly the contact angle formulas. We also show how to introduce the concept of surface disorder within the problem and, inspired by biomimetism, study its effect on superhydrophobicity. Our results, quite generally, prove that introducing disorder, at fixed given roughness, will lower the contact angle: a disordered substrate will have a lower contact angle than a corresponding periodic substrate. We also show that there are some choices of disorder for which the loss of superhydrophobicity can be made small, making superhydrophobicity robust.

Graphical abstract

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

References

  1. 1.
    P. Roach, N.J. Shirtcliffe, M.I. Newton, Soft Matter 4, 224 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    X. Zhang, F. Shi, J. Niu, Y. Jiang, Z. Wang, Journal of Materials Chemistry 18, 621 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Genzer, K. Efimenko, Biofouling 22, 339 (2006).CrossRefGoogle Scholar
  4. 4.
    D. Quéré, Annu. Rev. Mater. Res. 38, 71 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    C. Yang, U. Tartaglino, B. Persson, Phys. Rev. Lett. 97, 116103 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    M. Sbragaglia, A.M. Peters, C. Pirat, B.M. Borkent, R.G.H. Lammertink, M. Wessling, D. Lohse, Phys. Rev. Lett. 99, 156001 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    B. Bhushan, Phil. Trans. R. Soc. A 367, 1445 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    R. Rioboo, M. Voué, A. Vaillant, D. Seveno, J. Conti, A.I. Bondar, D.A. Ivanov, J. De Coninck, Langmuir 24, 9508 (2008).CrossRefGoogle Scholar
  9. 9.
    S. Desbief, B. Grignard, C. Detrembleur, R. Rioboo, A. Vaillant, D. Seveno, M. Voué, J. De Coninck, A.M. Jonas, C. Jérome, P. Damman, R. Lazzaroni, Langmuir 26, 2057 (2010).CrossRefGoogle Scholar
  10. 10.
    B. Grignard, A. Vaillant, J. De Coninck, M. Piens, A.M. Jonas, C. Detrembleur, C. Jérome, Langmuir 27, 335 (2011).CrossRefGoogle Scholar
  11. 11.
    J. De Coninck, F. Dunlop, T. Huillet, J. Stat. Mech., P06013 (2011).Google Scholar
  12. 12.
    P. Collet, J. De Coninck, F. Dunlop, A. Regnard, Phys. Rev. Lett. 79, 3704 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    P. Collet, J. De Coninck, K. Drouiche, F. Dunlop, Colloid Polym. Sci. 291, 291 (2013).CrossRefGoogle Scholar
  14. 14.
    R. Rioboo, B. Delattre, D. Duvivier, A. Vaillant, J. De Coninck, Adv. Colloid Interface Sci. 175, 1 (2012).CrossRefGoogle Scholar
  15. 15.
    W. Barthlott, C. Neinhuis, Planta 202, 1 (1997).CrossRefGoogle Scholar
  16. 16.
    P.S. Tsai, Y.M. Yang, Y.L. Lee, Nanotechnology 18, 465604 (2007).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joël De Coninck
    • 1
  • François Dunlop
    • 2
  • Thierry Huillet
    • 2
  1. 1.Laboratory of Surface and Interfacial PhysicsUniversity of MonsMonsBelgium
  2. 2.Laboratory of Physics: Theory and Models, CNRS UMR 8089Cergy-Pontoise UniversityCergy-PontoiseFrance

Personalised recommendations