Numerical simulation of wind sand movement in straw checkerboard barriers

  • Ning Huang
  • Xianpan Xia
  • Ding Tong
Regular Article

Abstract.

Straw checkerboard barrier (SCB) is the most representative antidesertification measure and plays a significant role in antidesertification projects. Large-eddy simulation and discrete-particle tracing were used to numerically simulate the wind sand movement inside the straw checkerboard barrier (SCB), study the movement characteristics of sand particles, find the transverse velocities of sand particles and flow field, and obtain the contour of the transverse velocity of coupled wind field within the SCB. The results showed that 1) compared with that at the inlet of the SCB, the sand transport rate inside the SCB greatly decreases and the speed of sand grain movement also evidently drops, indicating that the SCB has very good sand movement preventing and fixing function; 2) within the SCB there exists a series of unevenly distributed eddies of wind sand flow, their strength decreases gradually with increasing the transverse distance; 3) affected by eddies or reflux, sand particles carried by the wind sand flow have to drop forward and backward the two interior walls inside the SCB, respectively, forming a v-shaped sand trough; 4) the sand transport rate gradually decreases with increasing number of SCBs, which reveals that the capacity of the wind field to transport sand particles decreases. This research is of significance in sandstorm and land desertification control.

Keywords

Flowing Matter: Granular Matter 

References

  1. 1.
    X.J. Zheng, Mechanics of Wind-blown Sand Movement (Springer, 2009)Google Scholar
  2. 2.
    T. Wang, G.T. Wang, Z.G. Qian, G.S. Yang, J.J. Qu, D.L. Li, Chin. J. Desert Res. 21, 322 (2001)Google Scholar
  3. 3.
    X.J. Zheng, Y.H. Zhou, Mech. Engin. 25, 11 (2003)Google Scholar
  4. 4.
    Kenneth Pye, Haim Tsoar, Aeolian Sand and Sand Dunes (Springer, 2009)Google Scholar
  5. 5.
    Katsumori Hatanaka, Shiataro Hotta, Int. J. Numer. Methods Fluids 24, 1291 (1997)CrossRefMATHGoogle Scholar
  6. 6.
    John D. Wilson, J. Appl. Meteorol. 43, 1392 (2004)CrossRefADSGoogle Scholar
  7. 7.
    J.P. Bitog, I.B. Lee, M.H. Shin, et al., Atmos. Environ. 43, 4612 (2009)CrossRefADSGoogle Scholar
  8. 8.
    T. Bouvet, J.D. Wilson, A. Tuzet, J. Appl. Meteorol. Climatol. 45, 1332 (2006)CrossRefADSGoogle Scholar
  9. 9.
    J.L. Santiago, F. Martin, A. Cuerva, et al., Atmos. Environ. 41, 6406 (2007)CrossRefADSGoogle Scholar
  10. 10.
    Z.T. Wang, X.J. Zheng, Chin. J. Desert Res. 22, (2002)Google Scholar
  11. 11.
    Z.D. Zhu, Z.L. Zhao, Y.Q. Lin, Desert Control Engineering (Environmental Science Press, Beijing, 1998)Google Scholar
  12. 12.
    X.W. Liu, Wind tunnel experiments of Straw checkerboard barriers (Ningxia People's Publishing House, Yinchuan, 1988). Google Scholar
  13. 13.
    M.V. Carneiro, T. Pähtz, H.J. Herrmann, Phys. Rev. Lett. 107, 098001 (2011)CrossRefADSGoogle Scholar
  14. 14.
    B.S. Anderson, P.K. Haff, Wind modification and bed response during saltation of sand in air (Springer-Verlag, 1991)Google Scholar
  15. 15.
    Y.P. Shao, A. Li, Boundary-Layer Meteorol. 91, 199 (1999)CrossRefADSGoogle Scholar
  16. 16.
    D.J. Tritton, Physical Fluid Dynamics (van Nostrand Reinhold Company, 1977) pp. 21-23Google Scholar
  17. 17.
    B.R. White, J.C. Schulz, J. Fluid Mech. 81, 497 (1977)CrossRefADSGoogle Scholar
  18. 18.
    B.B. Willetts, M.A. Rice, Acta Mechan. 63, 255 (1986)CrossRefGoogle Scholar
  19. 19.
    B.B. Willetts, I.K. McEwan, M.A. Rice, Acta Mechan. (suppl.1) 23, (1991)Google Scholar
  20. 20.
    I.K. McEwan, B.B. Willetts, J. Fluid Mech. 52, 99 (1993)CrossRefADSGoogle Scholar
  21. 21.
    S. Mitha, M.Q. Tran, B.T. Werner, P.K. Haff, Acta Mech. 63, 267 (1986)CrossRefGoogle Scholar
  22. 22.
    I. Vinkovic, C. Aguirre, M. Ayrault, S. Simoëns, Boundary-Layer Meteorol. 121, 283 (2006)CrossRefADSGoogle Scholar
  23. 23.
    B.T. Werner, J. Geol. 98, 1 (1990)CrossRefADSGoogle Scholar
  24. 24.
    Marco C. M. de M. Luna M, Eric J. R. Parteli, Orencio Durán, et al., Geomorphology 129, 215 (2011)CrossRefADSGoogle Scholar
  25. 25.
    Marco C. M. de M. Luna M, Eric J. R. Parteli, Hans J. Herrmann, Geomorphology 159-160, 169 (2012)Google Scholar
  26. 26.
    T.L. Bo, X.J. Zheng, Geomorphology 180-181, 24 (2013)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ning Huang
    • 1
  • Xianpan Xia
    • 1
  • Ding Tong
    • 1
  1. 1.Key Laboratory of Ministry for Education on Western Disaster and EnvironmentLanzhou UniversityLanzhouChina

Personalised recommendations