Skip to main content
Log in

Tuning active emulsion dynamics via surfactants and topology

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studies of networks of such self-propelled chemical oscillators and show that the resulting dynamics depend strongly on the topology of the active matter units and their connections. The chemical oscillations can couple via the exchange of promoter and inhibitor type of reaction intermediates across the droplets under precise conditions of surfactant bilayer formation between the droplets. The self-emerging synchronization dynamics are then characterized by the topology of the oscillator networks. Further, we show that the chemical oscillations inside the droplets cause oscillatory speed variations in the motion of individual droplets, extending our previous studies on such swimmers. Finally, we demonstrate that qualitatively new types of self-propelled motion can occur when simple droplet networks, for example two droplets connected by a bilayer, are set into motion. Altogether, these results lead to exciting possibilities in future studies of autonomous active matter.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  2. K. Kruse, F. Jülicher, Curr. Opin. Cell Biol. 17, 20 (2005)

    Article  Google Scholar 

  3. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, New York, 1984)

  4. S.H. Strogatz, Physica D: Nonlin. Phenom. 143, 1 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. F.D.D. Santos, T. Ondarçuhu, Phys. Rev. Lett. 75, 2972 (1995)

    Article  ADS  Google Scholar 

  6. Y. Sumino, N. Magome, T. Hamada, K. Yoshikawa, Phys. Rev. Lett. 94, 068301 (2005)

    Article  ADS  Google Scholar 

  7. H. Linke, B.J. Alemán, L.D. Melling, M.J. Taormina, M.J. Francis, C.C. Dow-Hygelund, V. Narayanan, R.P. Taylor, A. Stout, Phys. Rev. Lett. 96, 154502 (2006)

    Article  ADS  Google Scholar 

  8. J. Howse et al., Phys. Rev. Lett. 99, (2007)

  9. S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13, 073021 (2011)

    Article  ADS  Google Scholar 

  10. T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)

    Article  ADS  Google Scholar 

  11. J. Toner, Y. Tu, S. Ramaswamy, Ann. Phys. (N.Y.) 318, 170 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. K. Bhattacharya, T. Vicsek, New J. Phys. 12, 093019 (2010)

    Article  ADS  Google Scholar 

  13. V. Schaller et al., Nature 467, 73 (2010)

    Article  ADS  Google Scholar 

  14. V. Guttal, I.D. Couzin, Proc. Natl. Acad. Sci. U.S.A. 107, 16172 (2010)

    Article  ADS  Google Scholar 

  15. P. Romanczuk, I.D. Couzin, L. Schimansky-Geier, Phys. Rev. Lett. 102, 010602 (2009)

    Article  ADS  Google Scholar 

  16. D. Dormann, B. Vasiev, C.J. Weijer, Philos. Trans. R. Soc. London. Ser. B 355, 983 (2000)

    Article  Google Scholar 

  17. P. Lenz, L. Sogaard-Andersen, Nat. Rev. Microbiol. 9, 565 (2011)

    Article  Google Scholar 

  18. D. Tanaka, Phys. Rev. Lett. 99, 134103 (2007)

    Article  ADS  Google Scholar 

  19. D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)

    Article  ADS  Google Scholar 

  20. E.A. Martens, S. Thutupalli, A. Fourriere, O. Hallatschek, Proc. Natl. Acad. Sci. U.S.A. 110, 10563 (2013)

    Article  ADS  Google Scholar 

  21. R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 75, 016601 (2012)

    Article  ADS  Google Scholar 

  22. H. Onuma, A. Okubo, M. Yokokawa, M. Endo, A. Kurihashi, H. Sawahata, J. Phys. Chem. A 115, 14137 (2011)

    Article  Google Scholar 

  23. S. White, Biophys. J. 23, 337 (1978)

    Article  ADS  Google Scholar 

  24. S. Thutupalli, S. Herminghaus, R. Seemann, Soft Matter 7, 1312 (2011)

    Article  ADS  Google Scholar 

  25. M. Giver, Z. Jabeen, B. Chakraborty, Phys. Rev. E 83, 046206 (2011)

    Article  ADS  Google Scholar 

  26. H. Hong, S.H. Strogatz, Phys. Rev. Lett. 106, 054102 (2011)

    Article  ADS  Google Scholar 

  27. S. Thutupalli, J.B. Fleury, A. Steinberger, S. Herminghaus, R. Seemann, Chem. Commun. 49, 1443 (2013)

    Article  Google Scholar 

  28. S. Simon, L. Lis, R. MacDonald, J. Kauffman, Biophys. J. 19, 83 (1977)

    Article  Google Scholar 

  29. N. Uchida, R. Golestanian, Phys. Rev. Lett. 104, 178103 (2010)

    Article  ADS  Google Scholar 

  30. E. Niebur, H.G. Schuster, D.M. Kammen, Phys. Rev. Lett. 67, 2753 (1991)

    Article  ADS  Google Scholar 

  31. H. Sakaguchi, Y. Kuramoto, Prog. Theor. Phys. 76, 576 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Ares, L.G. Morelli, D.J. Jörg, A.C. Oates, F. Jülicher, Phys. Rev. Lett. 108, 204101 (2012)

    Article  ADS  Google Scholar 

  33. M. Toiya, H.O. González-Ochoa, V.K. Vanag, S. Fraden, I.R. Epstein, J. Phys. Chem. Lett. 1, 1241 (2010)

    Article  Google Scholar 

  34. F. Alcantara, M. Monk, Journal of General Microbiology 85, 321 (1974)

    Article  Google Scholar 

  35. U. Parlitz, A. Schlemmer, S. Luther, Phys. Rev. E 83, (2011)

  36. M. Toiya, V.K. Vanag, I.R. Epstein, Angew. Chem. 47, 7753 (2008)

    Article  Google Scholar 

  37. M. Schmitt, H. Stark, EPL 101, 44008 (2013)

    Article  ADS  Google Scholar 

  38. K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 108, 10940 (2011)

    Article  Google Scholar 

  39. H. Kitahata, N. Yoshinaga, K.H. Nagai, Y. Sumino, Phys. Rev. E 84, 015101 (2011)

    Article  ADS  Google Scholar 

  40. J. Yan, M. Bloom, S.C. Bae, E. Luijten, S. Granick, Nature 491, 578 (2012)

    Article  ADS  Google Scholar 

  41. S. Thutupalli, Towards Autonomous Soft Matter Systems (Springer International Publishing, Heidelberg, 2013), ISBN 978-3-319-00734-2

  42. G.V. Kolmakov, V.V. Yashin, S.P. Levitan, A.C. Balazs, Proc. Natl. Acad. Sci. U.S.A. 107, 12417 (2010)

    Article  ADS  Google Scholar 

  43. P. Dayal, O. Kuksenok, A.C. Balazs, Proc. Natl. Acad. Sci. U.S.A. 110, 431 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Thutupalli.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thutupalli, S., Herminghaus, S. Tuning active emulsion dynamics via surfactants and topology. Eur. Phys. J. E 36, 91 (2013). https://doi.org/10.1140/epje/i2013-13091-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13091-2

Keywords

Navigation