Advertisement

Tuning active emulsion dynamics via surfactants and topology

  • Shashi Thutupalli
  • Stephan Herminghaus
Regular Article

Abstract.

We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studies of networks of such self-propelled chemical oscillators and show that the resulting dynamics depend strongly on the topology of the active matter units and their connections. The chemical oscillations can couple via the exchange of promoter and inhibitor type of reaction intermediates across the droplets under precise conditions of surfactant bilayer formation between the droplets. The self-emerging synchronization dynamics are then characterized by the topology of the oscillator networks. Further, we show that the chemical oscillations inside the droplets cause oscillatory speed variations in the motion of individual droplets, extending our previous studies on such swimmers. Finally, we demonstrate that qualitatively new types of self-propelled motion can occur when simple droplet networks, for example two droplets connected by a bilayer, are set into motion. Altogether, these results lead to exciting possibilities in future studies of autonomous active matter.

Graphical abstract

Keywords

Living systems: Biomimetic Systems 

Supplementary material

10189_2013_9905_MOESM1_ESM.avi (2 mb)
Supplementary material

References

  1. 1.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    K. Kruse, F. Jülicher, Curr. Opin. Cell Biol. 17, 20 (2005)CrossRefGoogle Scholar
  3. 3.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, New York, 1984)Google Scholar
  4. 4.
    S.H. Strogatz, Physica D: Nonlin. Phenom. 143, 1 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    F.D.D. Santos, T. Ondarçuhu, Phys. Rev. Lett. 75, 2972 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Sumino, N. Magome, T. Hamada, K. Yoshikawa, Phys. Rev. Lett. 94, 068301 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    H. Linke, B.J. Alemán, L.D. Melling, M.J. Taormina, M.J. Francis, C.C. Dow-Hygelund, V. Narayanan, R.P. Taylor, A. Stout, Phys. Rev. Lett. 96, 154502 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    J. Howse et al., Phys. Rev. Lett. 99, (2007)Google Scholar
  9. 9.
    S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13, 073021 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    J. Toner, Y. Tu, S. Ramaswamy, Ann. Phys. (N.Y.) 318, 170 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    K. Bhattacharya, T. Vicsek, New J. Phys. 12, 093019 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    V. Schaller et al., Nature 467, 73 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    V. Guttal, I.D. Couzin, Proc. Natl. Acad. Sci. U.S.A. 107, 16172 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    P. Romanczuk, I.D. Couzin, L. Schimansky-Geier, Phys. Rev. Lett. 102, 010602 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    D. Dormann, B. Vasiev, C.J. Weijer, Philos. Trans. R. Soc. London. Ser. B 355, 983 (2000)CrossRefGoogle Scholar
  17. 17.
    P. Lenz, L. Sogaard-Andersen, Nat. Rev. Microbiol. 9, 565 (2011)CrossRefGoogle Scholar
  18. 18.
    D. Tanaka, Phys. Rev. Lett. 99, 134103 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    E.A. Martens, S. Thutupalli, A. Fourriere, O. Hallatschek, Proc. Natl. Acad. Sci. U.S.A. 110, 10563 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 75, 016601 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    H. Onuma, A. Okubo, M. Yokokawa, M. Endo, A. Kurihashi, H. Sawahata, J. Phys. Chem. A 115, 14137 (2011)CrossRefGoogle Scholar
  23. 23.
    S. White, Biophys. J. 23, 337 (1978)ADSCrossRefGoogle Scholar
  24. 24.
    S. Thutupalli, S. Herminghaus, R. Seemann, Soft Matter 7, 1312 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    M. Giver, Z. Jabeen, B. Chakraborty, Phys. Rev. E 83, 046206 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    H. Hong, S.H. Strogatz, Phys. Rev. Lett. 106, 054102 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    S. Thutupalli, J.B. Fleury, A. Steinberger, S. Herminghaus, R. Seemann, Chem. Commun. 49, 1443 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Simon, L. Lis, R. MacDonald, J. Kauffman, Biophys. J. 19, 83 (1977)CrossRefGoogle Scholar
  29. 29.
    N. Uchida, R. Golestanian, Phys. Rev. Lett. 104, 178103 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    E. Niebur, H.G. Schuster, D.M. Kammen, Phys. Rev. Lett. 67, 2753 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    H. Sakaguchi, Y. Kuramoto, Prog. Theor. Phys. 76, 576 (1986)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    S. Ares, L.G. Morelli, D.J. Jörg, A.C. Oates, F. Jülicher, Phys. Rev. Lett. 108, 204101 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    M. Toiya, H.O. González-Ochoa, V.K. Vanag, S. Fraden, I.R. Epstein, J. Phys. Chem. Lett. 1, 1241 (2010)CrossRefGoogle Scholar
  34. 34.
    F. Alcantara, M. Monk, Journal of General Microbiology 85, 321 (1974)CrossRefGoogle Scholar
  35. 35.
    U. Parlitz, A. Schlemmer, S. Luther, Phys. Rev. E 83, (2011)Google Scholar
  36. 36.
    M. Toiya, V.K. Vanag, I.R. Epstein, Angew. Chem. 47, 7753 (2008)CrossRefGoogle Scholar
  37. 37.
    M. Schmitt, H. Stark, EPL 101, 44008 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 108, 10940 (2011)CrossRefGoogle Scholar
  39. 39.
    H. Kitahata, N. Yoshinaga, K.H. Nagai, Y. Sumino, Phys. Rev. E 84, 015101 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    J. Yan, M. Bloom, S.C. Bae, E. Luijten, S. Granick, Nature 491, 578 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    S. Thutupalli, Towards Autonomous Soft Matter Systems (Springer International Publishing, Heidelberg, 2013), ISBN 978-3-319-00734-2Google Scholar
  42. 42.
    G.V. Kolmakov, V.V. Yashin, S.P. Levitan, A.C. Balazs, Proc. Natl. Acad. Sci. U.S.A. 107, 12417 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    P. Dayal, O. Kuksenok, A.C. Balazs, Proc. Natl. Acad. Sci. U.S.A. 110, 431 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Max Planck Institute for Dynamics and Self-organizationGöttingenGermany

Personalised recommendations