Glassy dynamics of soft matter under 1D confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films

  • Simone Napolitano
  • Simona Capponi
  • Bram Vanroy
Colloquium

Abstract

The structural dynamics of polymers and simple liquids confined at the nanometer scale has been intensively investigated in the last two decades in order to test the validity of theories on the glass transition predicting a characteristic length scale of a few nanometers. Although this goal has not yet been reached, the anomalous behavior displayed by some systems --e.g. thin films of polystyrene exhibit reductions of Tg exceeding 70K and a tremendous increase in the elastic modulus-- has attracted a broad community of researchers, and provided astonishing advancement of both theoretical and experimental soft matter physics. 1D confinement is achieved in thin films, which are commonly treated as systems at thermodynamic equilibrium where free surfaces and solid interfaces introduce monotonous mobility gradients, extending for several molecular sizes. Limiting the discussion to finite-size and interfacial effects implies that film thickness and surface interactions should be sufficient to univocally determine the deviation from bulk behavior. On the contrary, such an oversimplified picture, although intuitive, cannot explain phenomena like the enhancement of segmental mobility in proximity of an adsorbing interface, or the presence of long-lasting metastable states in the liquid state. Based on our recent work, we propose a new picture on the dynamics of soft matter confined in ultrathin films, focusing on non-equilibrium and on the impact of irreversibly chain adsorption on the structural relaxation. We describe the enhancement of dynamics in terms of the excess in interfacial free volume, originating from packing frustration in the adsorbed layer (Guiselin brush) at t* ≪ 1 , where t* is the ratio between the annealing time and the time scale of adsorption. Prolonged annealing at times exceeding the reptation time (usually t* ≫ 1 induces densification, and thus reduces the deviation from bulk behavior. In this Colloquium, after reviewing the experimental approaches permitting to investigate the structural relaxation of films with one, two or no free surfaces by means of dielectric spectroscopy, we propose several methods to determine gradients of mobility in thin films, and then discuss on the unexploited potential of analyses based on the time, temperature and thickness dependence of the orientational polarization via the dielectric strength.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005)ADSGoogle Scholar
  2. 2.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)ADSGoogle Scholar
  3. 3.
    V. Lubchenko, P.G. Wolynes, in Annual Review of Physical Chemistry Vol. 58 (Annual Reviews, Palo Alto, 2007) pp. 235Google Scholar
  4. 4.
    H. Shintani, H. Tanaka, Nat. Phys. 2, 200 (2006)Google Scholar
  5. 5.
    H. Tanaka, T. Kawasaki, H. Shintani, K. Watanabe, Nat. Mater. 9, 324 (2010)ADSGoogle Scholar
  6. 6.
    H. Tanaka, Eur. Phys. J. E 35, 113 (2012)Google Scholar
  7. 7.
    Differently from the RFOT theory, where the formation of the droplets is driven by configurational entropy alone, the TOP model predicts that the formation of MRCOs is induced by two simultaneous processes: the maximization of the density of the system and the maximization concentration of intermolecular bondsGoogle Scholar
  8. 8.
    J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000)ADSGoogle Scholar
  9. 9.
    X. Zheng, M.H. Rafailovich, J. Sokolov, Y. Strzhemechny, S.A. Schwarz, B.B. Sauer, M. Rubinstein, Phys. Rev. Lett. 79, 241 (1997)ADSGoogle Scholar
  10. 10.
    C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003)ADSGoogle Scholar
  11. 11.
    C. Rotella, S. Napolitano, L. De Cremer, G. Koeckelberghs, M. Wübbenhorst, Macromolecules 43, 8686 (2010)ADSGoogle Scholar
  12. 12.
    R.D. Priestley, C.J. Ellison, L.J. Broadbelt, J.M. Torkelson, Science 309, 456 (2005)ADSGoogle Scholar
  13. 13.
    E. Donth, The Glass Transition, Relaxation Dynamics in Liquids and Disordered Materials (Springer-Verlag, New York, 2001)Google Scholar
  14. 14.
    G.B. DeMaggio, W.E. Frieze, D.W. Gidley, M. Zhu, H.A. Hristov, A.F. Yee, Phys. Rev. Lett. 78, 1524 (1997)ADSGoogle Scholar
  15. 15.
    K. Fukao, Y. Miyamoto, Phys. Rev. E 61, 1743 (2000)ADSGoogle Scholar
  16. 16.
    S. Napolitano, D. Prevosto, M. Lucchesi, P. Pingue, M. D'Acunto, P. Rolla, Langmuir 23, 2103 (2007)Google Scholar
  17. 17.
    Z. Fakhraai, J.A. Forrest, Science 319, 600 (2008)Google Scholar
  18. 18.
    S. Napolitano, C. Rotella, M. Wübbenhorst, Acs Macro Lett. 1, 1189 (2012)Google Scholar
  19. 19.
    S. Napolitano, A. Pilleri, P. Rolla, M. Wübbenhorst, Acs Nano 4, 841 (2010)Google Scholar
  20. 20.
    J.J. Hernandez, D.R. Rueda, M.C. Garcia-Gutierrez, A. Nogales, T.A. Ezquerra, M. Soccio, N. Lotti, A. Munari, Langmuir 26, 10731 (2010)Google Scholar
  21. 21.
    D.R. Rueda, J.J. Hernandez, M.C. Garcia-Gutierrez, T.A. Ezquerra, M. Soccio, N. Lotti, A. Munari, J. Perlich, R. Serna, Langmuir 26, 17540 (2010)Google Scholar
  22. 22.
    D.R. Rueda, A. Nogales, J.J. Hernandez, M.-C. Garcia-Gutierrez, T.A. Ezquerra, S.V. Roth, M.G. Zolotukhin, R. Serna, Langmuir 23, 12677 (2007)Google Scholar
  23. 23.
    S. Napolitano, M. Wübbenhorst, Nat. Commun. 2, 260 (2011)ADSGoogle Scholar
  24. 24.
    A. Serghei, F. Kremer, Macrom. Chem. Phys. 209, 810 (2008)Google Scholar
  25. 25.
    H.Y. Lu, W. Chen, T.P. Russell, Macromolecules 42, 9111 (2009)ADSGoogle Scholar
  26. 26.
    B. Frieberg, E. Glynos, G. Sakellariou, P.F. Green, Acs Macro Lett. 1, 636 (2012)Google Scholar
  27. 27.
    B. Frieberg, E. Glynos, P.F. Green, Phys. Rev. Lett. 108, (2012)Google Scholar
  28. 28.
    E. Glynos, B. Frieberg, H. Oh, M. Liu, D.W. Gidley, P.F. Green, Phys. Rev. Lett. 106, (2011)Google Scholar
  29. 29.
    Z.H. Yang, Y. Fujii, F.K. Lee, C.H. Lam, O.K.C. Tsui, Science 328, 1676 (2010)ADSGoogle Scholar
  30. 30.
    D. Qi, Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 101, (2008)Google Scholar
  31. 31.
    C.R. Daley, Z. Fakhraai, M.D. Ediger, J.A. Forrest, Soft Matter 8, 2206 (2012)ADSGoogle Scholar
  32. 32.
    H.K. Nguyen, M. Labardi, S. Capaccioli, M. Lucchesi, P. Rolla, D. Prevosto, Macromolecules 45, 2138 (2012)ADSGoogle Scholar
  33. 33.
    J.E.G. Lipson, S.T. Milner, Eur. Phys. J. B 72, 133 (2009)ADSGoogle Scholar
  34. 34.
    V.M. Boucher, D. Cangialosi, H.J. Yin, A. Schonhals, A. Alegria, J. Colmenero, Soft Matter 8, 5119 (2012)ADSGoogle Scholar
  35. 35.
    J.C. Maxwell, Philos. Trans. R. Soc. London 157, 49 (1867)Google Scholar
  36. 36.
    P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)ADSGoogle Scholar
  37. 37.
    J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)ADSGoogle Scholar
  38. 38.
    L. Larini, A. Ottochian, C. De Michele, D. Leporini, Nat. Phys. 4, 42 (2008)Google Scholar
  39. 39.
    K. Watanabe, T. Kawasaki, H. Tanaka, Nat. Mater. 10, 512 (2011)ADSGoogle Scholar
  40. 40.
    K. Ngai, Relaxation and Diffusion in Complex Systems (Springer, Berlin, 2011)Google Scholar
  41. 41.
    C. Bottcher, Theory of Dielectric Polarization (Elsevier Scientific Publishing Company, Amsterdam, 1973)Google Scholar
  42. 42.
    J. Runt, F.J. Fitzgerald, Dielectric Spectroscopy of Polymeric Materials: Fundamentals and Applications (American Chemical Society, 1997)Google Scholar
  43. 43.
    F. Kremer, A. Schoenhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)Google Scholar
  44. 44.
    A. Schonhals, E. Schlosser, Colloid Polym. Sci. 267, 125 (1989)Google Scholar
  45. 45.
    G. Tamman, G.Z. Hesse, Anorg. Alleg. Chem. 156, 245 (1926)Google Scholar
  46. 46.
    G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)Google Scholar
  47. 47.
    H.Z. Vogel, Phys. Z. 22, 645 (1921)Google Scholar
  48. 48.
    S. Havriliak, S. Negami, Polymer 8, 161 (1967)Google Scholar
  49. 49.
    P. Bebin, R.E. Prud'homme, Chem. Mater. 15, 965 (2003)Google Scholar
  50. 50.
    G. Blum, F. Kremer, T. Jaworek, G. Wegner, Adv. Mater. 7, 1017 (1995)Google Scholar
  51. 51.
    A. Serghei, F. Kremer, Rev. Sci. Instrum. 77, 116108 (2006)ADSGoogle Scholar
  52. 52.
    E.U. Mapesa, M. Erber, M. Tress, K.J. Eichhorn, A. Serghei, B. Voit, F. Kremer, Eur. Phys. J. ST 189, 173 (2010)Google Scholar
  53. 53.
    C. Rotella, S. Napolitano, M. Wübbenhorst, Macromolecules 42, 1415 (2009)ADSGoogle Scholar
  54. 54.
    M.C. Scott, D.R. Stevens, J.R. Bochinski, L.I. Clarke, ACS Nano 2, 2392 (2008)Google Scholar
  55. 55.
    S. Capponi, S. Napolitano, N.R. Behrnd, G. Couderc, J. Hulliger, M. Wübbenhorst, J. Phys. Chem. C 114, 16696 (2010)Google Scholar
  56. 56.
    M. Wübbenhorst, S. Capponi, S. Napolitano, S. Rozanski, G. Couderc, N.R. Behrnd, J. Hulliger, Eur. Phys. J. ST 189, 181 (2010)Google Scholar
  57. 57.
    S. Capponi, S. Napolitano, M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)ADSGoogle Scholar
  58. 58.
    M.W. den Otter, Sensors, Actuators A: Phys. 96, 140 (2002)Google Scholar
  59. 59.
    S. Peter, S. Napolitano, H. Meyer, M. Wübbenhorst, J. Baschnagel, Macromolecules 41, 7729 (2008)ADSGoogle Scholar
  60. 60.
    P.S. Crider, M.R. Majewski, Z. Jingyun, H. Oukris, N.E. Israeloff, Appl. Phys. Lett. 91, 013102 (2007)ADSGoogle Scholar
  61. 61.
    M. Labardi, D. Prevosto, K.H. Nguyen, S. Capaccioli, M. Lucchesi, P. Rolla, J. Vac. Sci. Technol. B 28, C4D11 (2010)Google Scholar
  62. 62.
    T.R. Albrecht, P. Grutter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991)ADSGoogle Scholar
  63. 63.
    G. A. Schwartz, C. Riedel, R. Arinero, P. Tordjeman, A. Alegria, J. Colmenero, Ultramicroscopy 111, 1366 (2011)Google Scholar
  64. 64.
    H.K. Nguyen, M. Labardi, M. Lucchesi, P. Rolla, D. Prevosto, Macromolecules 46, 555 (2013)ADSGoogle Scholar
  65. 65.
    C. Rotella, M. Wübbenhorst, S. Napolitano, Soft Matter 7, 5260 (2011)ADSGoogle Scholar
  66. 66.
    P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 59, 701 (2002)ADSGoogle Scholar
  67. 67.
    P. Scheidler, W. Kob, K. Binder, J. Phys. Chem. B 108, 6673 (2004)Google Scholar
  68. 68.
    D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W.L. Wu, Macromolecules 34, 5627 (2001)ADSGoogle Scholar
  69. 69.
    C.J. Vanoss, M.K. Chaudhury, R.J. Good, Chem. Rev. 88, 927 (1988)Google Scholar
  70. 70.
    D. Labahn, R. Mix, A. Schoenhals, Phys. Rev. E 79, 011801 (2009)ADSGoogle Scholar
  71. 71.
    H. Yin, S. Napolitano, A. Schoenhals, Macromolecules 45, 1652 (2012)ADSGoogle Scholar
  72. 72.
    C. Rotella, S. Napolitano, S. Vandendriessche, V.K. Valev, T. Verbiest, M. Larkowska, S. Kucharski, M. Wübbenhorst, Langmuir 27, 13533 (2011)Google Scholar
  73. 73.
    B. Vanroy, M. Wübbenhorst, S. Napolitano, Acs Macro Lett. 2, 168 (2013)Google Scholar
  74. 74.
    O. Guiselin, Europhys. Lett. 17, 225 (1991)ADSGoogle Scholar
  75. 75.
    C.J. Durning, B. O'Shaughnessy, U. Sawhney, D. Nguyen, J. Majewski, G.S. Smith, Macromolecules 32, 6772 (1999)ADSGoogle Scholar
  76. 76.
    J.F. Douglas, H.M. Schneider, P. Frantz, R. Lipman, S. Granick, J. Phys.: Condens. Matter 9, 7699 (1997)ADSGoogle Scholar
  77. 77.
    S. Granick, Eur. Phys. J. E 9, 421 (2002)Google Scholar
  78. 78.
    P. Linse, Soft Matter 8, 5140 (2012)ADSGoogle Scholar
  79. 79.
    C. Ligoure, L. Leibler, J. Phys. (Paris) 51, 1313 (1990)Google Scholar
  80. 80.
    P. Gin, N. Jiang, C. Liang, T. Taniguchi, B. Akgun, S.K. Satija, M.K. Endoh, T. Koga, Phys. Rev. Lett. 109, (2012)Google Scholar
  81. 81.
    S. Napolitano, M. Wübbenhorst, Macromolecules 39, 5967 (2006)ADSGoogle Scholar
  82. 82.
    K.L. Ngai, J. Phys. Chem. B 110, 26211 (2006)Google Scholar
  83. 83.
    C. Bauer, R. Bohmer, S. Moreno-Flores, R. Richert, H. Sillescu, D. Neher, Phys. Rev. E 61, 1755 (2000)ADSGoogle Scholar
  84. 84.
    S. Srivastava, J.K. Basu, Phys. Rev. Lett. 98, (2007)Google Scholar
  85. 85.
    J. Xu, D.W. Li, J. Chen, L. Din, X.L. Wang, F.F. Tao, G. Xue, Macromolecules 44, 7445 (2011)ADSGoogle Scholar
  86. 86.
    B.M.I. Flier, M. Baier, J. Huber, K. Muellen, S. Mecking, A. Zumbusch, D. Woell, Phys. Chem. Chem. Phys. 13, 1770 (2011)Google Scholar
  87. 87.
    B.M.I. Flier, M.C. Baier, J. Huber, K. Mullen, S. Mecking, A. Zumbusch, D. Woll, J. Am. Chem. Soc. 134, 480 (2012)Google Scholar
  88. 88.
    N.B. Tito, J.E.G. Lipson, S.T. Milner, Soft Matter 9, 3173 (2013)ADSGoogle Scholar
  89. 89.
    P.G. de Gennes, Eur. Phys. J. E 2, 201 (2000)Google Scholar
  90. 90.
    D. Cangialosi, M. Wübbenhorst, J. Groenewold, E. Mendes, H. Schut, A. van Veen, S.J. Picken, Phys. Rev. B 70, (2004)Google Scholar
  91. 91.
    V.M. Boucher, D. Cangialosi, A. Alegria, J. Colmenero, I. Pastoriza-Santos, L.M. Liz-Marzan, Soft Matter 7, 3607 (2011)ADSGoogle Scholar
  92. 92.
    D. Cangialosi, V.M. Boucher, A. Alegria, J. Colmenero, J. Chem. Phys. 135, (2011)Google Scholar
  93. 93.
    V. M. Boucher, D. Cangialosi, A. Alegria, J. Colmenero, Macromolecules 45, 5296 (2012)Google Scholar
  94. 94.
    D. Cangialosi, V.M. Boucher, A. Alegria, J. Colmenero, Polymer 53, 1362 (2012)Google Scholar
  95. 95.
    M.S. McCaig, D.R. Paul, J.W. Barlow, Polymer 41, 639 (2000)Google Scholar
  96. 96.
    A.W. Thornton, A.J. Hill, Indust. Engin. Chem. Res. 49, 12119 (2010)Google Scholar
  97. 97.
    S. Napolitano, C. Rotella, M. Wübbenhorst, Macromol. Rapid Commun. 32, 844 (2011)Google Scholar
  98. 98.
    P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Nat. Mater. 6, 278 (2007)ADSGoogle Scholar
  99. 99.
    Z. Jiang, H. Kim, X. Jiao, H. Lee, Y.J. Lee, Y. Byun, S. Song, D. Eom, C. Li, M.H. Rafailovich, L.B. Lurio, S.K. Sinha, Phys. Rev. Lett. 98, (2007)Google Scholar
  100. 100.
    G. Reiter, S. Napolitano, J. Polym. Sci. Part B-Polym. Phys. 48, 2544 (2010)ADSGoogle Scholar
  101. 101.
    G. Reiter, P.G. de Gennes, Eur. Phys. J. E 6, 25 (2001)Google Scholar
  102. 102.
    G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphael, Nat. Mater. 4, 754 (2005)ADSGoogle Scholar
  103. 103.
    D.R. Barbero, U. Steiner, Phys. Rev. Lett. 102, 248303 (2009)ADSGoogle Scholar
  104. 104.
    K.R. Thomas, A. Chenneviere, G. Reiter, U. Steiner, Phys. Rev. E 83, (2011)Google Scholar
  105. 105.
    R.N. Li, A. Clough, Z. Yang, O.K.C. Tsui, Macromolecules 45, 1085 (2012)ADSGoogle Scholar
  106. 106.
    H. Richardson, I. Lopez-Garcia, M. Sferrazza, J.L. Keddie, Phys. Rev. E 70, (2004)Google Scholar
  107. 107.
    H. Richardson, M. Sferrazza, J.L. Keddie, Eur. Phys. J. E 12, S87 (2003)Google Scholar
  108. 108.
    T.N. Liang, Z.Q. Zhang, T. Li, X.Z. Yang, Polymer 45, 1365 (2004)Google Scholar
  109. 109.
    C. Teng, Y. Gao, X. Wang, W. Jiang, C. Zhang, R. Wang, D. Zhou, G. Xue, Macromolecules 45, 6648 (2012)ADSGoogle Scholar
  110. 110.
    G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymer at Interfaces (Chapman & Hall, London, 1998)Google Scholar
  111. 111.
    M.M. Santore, Curr. Opin. Colloid Interface Sci. 10, 176 (2005)Google Scholar
  112. 112.
    R. Zajac, A. Chakrabarti, Phys. Rev. E 52, 6536 (1995)ADSGoogle Scholar
  113. 113.
    H.M. Schneider, P. Frantz, S. Granick, Langmuir 12, 994 (1996)Google Scholar
  114. 114.
    T.Z. Fu, U. Stimming, C.J. Durning, Macromolecules 26, 3271 (1993)ADSGoogle Scholar
  115. 115.
    J. Baschnagel, K. Binder, Macromolecules 28, 6808 (1995)ADSGoogle Scholar
  116. 116.
    S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. Part B-Polym. Phys. 44, 2951 (2006)ADSGoogle Scholar
  117. 117.
    S. Napolitano, M. Wübbenhorst, J. Phys. Chem. B 111, 9197 (2007)Google Scholar
  118. 118.
    S. Napolitano, M. Wübbenhorst, J. Phys. Chem. B 111, 5775 (2007)Google Scholar
  119. 119.
    Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, (2005)Google Scholar
  120. 120.
    S. Napolitano, V. Lupascu, M. Wübbenhorst, Macromolecules 41, 1061 (2008)ADSGoogle Scholar
  121. 121.
    R. Casalini, S. Capaccioli, M. Lucchesi, P.A. Rolla, M. Paluch, S. Corezzi, D. Fioretto, Phys. Rev. E 6404, (2001)Google Scholar
  122. 122.
    S. Corezzi, D. Fioretto, P. Rolla, Nature 420, 653 (2002)ADSGoogle Scholar
  123. 123.
    J. Martin, C. Mijangos, A. Sanz, T.A. Ezquerra, A. Nogales, Macromolecules 42, 5395 (2009)ADSGoogle Scholar
  124. 124.
    A.A. Levchenko, P. Jain, O. Trofymluk, P. Yu, A. Navrotsky, S. Sen, J. Phys. Chem. B 114, 3070 (2010)Google Scholar
  125. 125.
    S. Napolitano, M. Wübbenhorst, J. Phys. Chem. B 111, 5775 (2007)Google Scholar
  126. 126.
    K. Fukao, T. Terasawa, Y. Oda, K. Nakamura, D. Tahara, Phys. Rev. E 84, (2011)Google Scholar
  127. 127.
    K.L. Ngai, Eur. Phys. J. E 8, 225 (2002)Google Scholar
  128. 128.
    C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003)ADSGoogle Scholar
  129. 129.
    F. Dinelli, A. Ricci, T. Sgrilli, P. Baschieri, P. Pingue, M. Puttaswamy, P. Kingshott, Macromolecules 44, 987 (2011)ADSGoogle Scholar
  130. 130.
    F. Dinelli, T. Sgrilli, A. Ricci, P. Baschieri, P. Pingue, M. Puttaswamy, P. Kingshott, to be published in J. Polym. Sci. Part B-Polym. Phys., DOI:10.1002/polb.23310
  131. 131.
    T. Koga, N. Jiang, P. Gin, M.K. Endoh, S. Narayanan, L.B. Lurio, S.K. Sinha, Phys. Rev. Lett. 107, (2011)Google Scholar
  132. 132.
    A. Serghei, M. Tress, F. Kremer, J. Chem. Phys. 131, (2009)Google Scholar
  133. 133.
    S. Napolitano, M. Wübbenhorst, Polymer 51, 5309 (2010)Google Scholar
  134. 134.
    C. Alvarez, I. Sics, A. Nogales, Z. Denchev, S.S. Funari, T.A. Ezquerra, Polymer 45, 3953 (2004)Google Scholar
  135. 135.
    S. Napolitano, M. Wübbenhorst, J. Non-Cryst. Solids 353, 4357 (2007)ADSGoogle Scholar
  136. 136.
    S. Napolitano, M. Wübbenhorst, J. Phys.: Condens. Matter 19, 205121 (2007)ADSGoogle Scholar
  137. 137.
    P. Lunkenheimer, A. Pimenov, B. Schiener, R. Bohmer, A. Loidl, Europhys. Lett. 33, 611 (1996)ADSGoogle Scholar
  138. 138.
    U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, J. Non-Cryst. Solids 235, 173 (1998)ADSGoogle Scholar
  139. 139.
    C.B. Roth, J.M. Torkelson, Macromolecules 40, 3328 (2007)ADSGoogle Scholar
  140. 140.
    J.E. Pye, C.B. Roth, Phys. Rev. Lett. 107, (2011)Google Scholar
  141. 141.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996)ADSGoogle Scholar
  142. 142.
    S. Kim, C.B. Roth, J.M. Torkelson, J. Polym. Sci. Part B-Polym. Phys. 46, 2754 (2008)ADSGoogle Scholar
  143. 143.
    S. Kawana, R.A.L. Jones, Phys. Rev. E 63, 021501 (2001)ADSGoogle Scholar
  144. 144.
    S. Kim, J.M. Torkelson, Macromolecules 44, 4546 (2011)ADSGoogle Scholar
  145. 145.
    K. Paeng, S.F. Swallen, M.D. Ediger, J. Am. Chem. Soc. 133, 8444 (2011)Google Scholar
  146. 146.
    J. Hintermeyer, A. Herrmann, R. Kahlau, C. Goiceanu, E.A. Rossler, Macromolecules 41, 9335 (2008)ADSGoogle Scholar
  147. 147.
    C. Zhang, Y. Guo, K. Shepard, R.D. Priestley, J. Phys. Chem. Lett. 4, 431 (2013)Google Scholar
  148. 148.
    O. van den Berg, W.G.F. Sengers, W.F. Jager, S.J. Picken, M. Wübbenhorst, Macromolecules 37, 2460 (2004)ADSGoogle Scholar
  149. 149.
    R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, K. Fukao, Phys. Rev. E 75, (2007)Google Scholar
  150. 150.
    W.G.F. Sengers, O. van den Berg, M. Wübbenhorst, A.D. Gotsis, Polymer 46, 6064 (2005)Google Scholar
  151. 151.
    K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 5, 6405 (2001)Google Scholar
  152. 152.
    K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 6405, (2001)Google Scholar
  153. 153.
    D. Labahn, R. Mix, A. Schonhals, Phys. Rev. E 79, 9 (2009)Google Scholar
  154. 154.
    K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 64, 11 (2001)Google Scholar
  155. 155.
    A. Serghei, M. Tress, F. Kremer, Macromolecules 39, 9385 (2006)ADSGoogle Scholar
  156. 156.
    A. Serghei, Y. Mikhailova, H. Huth, C. Schick, K.J. Eichhorn, B. Voit, F. Kremer, Eur. Phys. J. E 17, 199 (2005)Google Scholar
  157. 157.
    P.K. Brazhnik, K.F. Freed, H. Tang, J. Chem. Phys. 101, 9143 (1994)ADSGoogle Scholar
  158. 158.
    C. Bauer, R. Richert, R. Bohmer, T. Christensen, J. Non-Cryst. Solids 262, 276 (2000)ADSGoogle Scholar
  159. 159.
    C.L. Soles, J.F. Douglas, W.L. Wu, H.G. Peng, D.W. Gidley, Macromolecules 37, 2890 (2004)ADSGoogle Scholar
  160. 160.
    C.J. Ellison, M.K. Mundra, J.M. Torkelson, Macromolecules 38, 1767 (2005)ADSGoogle Scholar
  161. 161.
    C. Kim, A. Facchetti, T.J. Marks, Science 318, 76 (2007)ADSGoogle Scholar
  162. 162.
    N. Hao, M. Bohning, H. Goering, A. Schonhals, Macromolecules 40, 2955 (2007)ADSGoogle Scholar
  163. 163.
    C. Housmans, M. Sferrazza, S. Napolitano, in preparationGoogle Scholar
  164. 164.
    J.E. Pye, C.B. Roth, Phys. Rev. Lett. 23, 107 (2011) DOI:10.1103/PhysRevLett.107.235701 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Simone Napolitano
    • 1
  • Simona Capponi
    • 2
  • Bram Vanroy
    • 3
  1. 1.Laboratory of Polymer and Soft Matter Dynamics, Faculté des SciencesUniversité Libre de BruxellesBruxellesBelgium
  2. 2.School of PhysicsUniversity College DublinDublinIreland
  3. 3.Department of Physics and AstronomyKULeuvenLeuvenBelgium

Personalised recommendations