The actin cortex as an active wetting layer

Regular Article
Part of the following topical collections:
  1. Active Matter

Abstract

Using active gel theory we study theoretically the properties of the cortical actin layer of animal cells. The cortical layer is described as a non-equilibrium wetting film on the cell membrane. The actin density is approximately constant in the layer and jumps to zero at its edge. The layer thickness is determined by the ratio of the polymerization velocity and the depolymerization rate of actin.

Graphical abstract

Keywords

Topical issue: Active Matter 

References

  1. 1.
    B. Alberts, Molecular Biology of the Cell, 5th edition (Garland Sci., Abbingdon, UK, 2008).Google Scholar
  2. 2.
    J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc., Sunderland, 2001).Google Scholar
  3. 3.
    M.C. Marchetti, to be published in Rev. Mod. Phys. (arXiv: 1207.2929).Google Scholar
  4. 4.
    K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Phys. Rev. Lett. 92, 078101 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Eur. Phys. J. E 16, 5 (2005).CrossRefGoogle Scholar
  6. 6.
    J.-F. Joanny, F. Jülicher, K. Kruse, J. Prost, New J. Phys. 9, 422 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys. Rev. Lett. 92, 118101 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    F. Jülicher, K. Kruse, J. Prost, J.-F. Joanny, Phys. Rep. 449, 3 (2007).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    P.C. Martin, O. Parodi, P.S. Pershan, Phys. Rev. A 6, 2401 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    G. Salbreux, J.-F. Joanny, J. Prost, P. Pullarkat, Phys. Biol. 4, 268 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    O. Medalia et al., Science 298, 1208 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    J.W. Cahn, J. Chem. Phys. 66, 3677 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    S. Romero et al., Cell 119, 419 (2004).CrossRefGoogle Scholar
  16. 16.
    B. Bugyi, M.-F. Carlier, Annu. Rev. Biophys. 39, 449 (2010).CrossRefGoogle Scholar
  17. 17.
    V. Achard et al., Curr. Biol. 20, 423 (2010).CrossRefGoogle Scholar
  18. 18.
    A.C. Callan-Jones, F. Jülicher, New J. Phys. 13, 093027 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    G.K. Batchelor, J. Fluid Mech. 41, 545 (1970).MathSciNetADSCrossRefMATHGoogle Scholar
  20. 20.
    P.R. Nott, J.F. Brady, J. Fluid Mech. 275, 157 (1994).ADSCrossRefMATHGoogle Scholar
  21. 21.
    P.M. Bendix et al., Biophys. J. 94, 3126 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    E. Brézin, B. Halperin, S. Leibler, Phys. Rev. Lett. 50, 1387 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    M. Fritzsche, A. Lawalle, T. Duke, K. Kruse, G. Charras, Mol. Biol. Cell. 24, 757 (2013).CrossRefGoogle Scholar
  24. 24.
    J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1989).Google Scholar
  25. 25.
    F. Restagno, L. Bocquet, T. Biben, Phys. Rev. Lett. 84, 2433 (2000).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. -F. Joanny
    • 1
  • K. Kruse
    • 2
  • J. Prost
    • 1
    • 3
  • S. Ramaswamy
    • 4
  1. 1.Physico Chimie Curie (Institut Curie, Cnrs UMR 168, UPMC)Institut Curie Centre de RechercheParis Cedex 05France
  2. 2.Theoretische PhysikUniversität des SaarlandesSaarbrückenGermany
  3. 3.ESPCIParisFrance
  4. 4.TIFR Centre for Interdisciplinary SciencesTata Institute of Fundamental ResearchHyderabadIndia

Personalised recommendations