Comparison of A-block polydispersity effects on BAB triblock and AB diblock copolymer melts

Regular Article

Abstract

Recent experiments on triblock copolymer melts suggest that polydispersity effects are dramatically enhanced when polydisperse blocks are constrained by both ends to the internal interfaces of an ordered morphology. To quantify the relevance of architecture, we compare BAB triblock and AB diblock copolymer melts with polydisperse A blocks and monodisperse B blocks, using self-consistent field theory (SCFT). We do, in fact, find an enhanced shift in the order-order transitions (OOTs) of the triblock copolymer system in good agreement with the experiments, which we attribute to a reduction of entropy in the A-rich domains due to the absence of chain ends. There is also a slightly enhanced dilation of the domains, but not nearly to the same degree as reported by the experiments. Unlike in the experiments, our calculations indicate that the polydispersity-induced shifts in the order-disorder transition (ODT) should be quantitatively similar for both diblocks and triblocks. It is possible that some of the pronounced effects observed in the experiments have more to do with the detailed shape of the molecular-weight distribution than the triblock architecture.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    M.A. Hillmyer, J. Polym. Sci. Part B 45, 3249 (2007).CrossRefGoogle Scholar
  2. 2.
    N.A. Lynd, A.J. Meuler, M.A. Hillmyer, Prog. Polym. Sci. 33, 875 (2008).CrossRefGoogle Scholar
  3. 3.
    D. Bendejacq, V. Ponsinet, M. Joanicot, Y.-L. Loo, R.A. Register, Macromolecules 35, 6645 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    N.A. Lynd, B.D. Hamilton, M.A. Hillmyer, J. Polym. Sci. Part B. 45, 3386 (2007).CrossRefGoogle Scholar
  5. 5.
    N.A. Lynd, M.A. Hillmyer, Macromolecules 38, 8803 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    N.A. Lynd, M.A. Hillmyer, Macromolecules 40, 8050 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    J. Listak, W. Jakubowski, L. Mueller, A. Plichta, K. Matyjaszewski, M.R. Bockstaller, Macromolecules 41, 5919 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    A.-V. Ruzette, S. Tencé-Girault, L. Leibler, F. Chauvin, D. Bertin, O. Guerret, P. Gérard, Macromolecules 39, 5804 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    D.M. Cooke, A.-C. Shi, Macromolecules 39, 6661 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    M.W. Matsen, Eur. Phys. J. E 21, 199 (2006).CrossRefGoogle Scholar
  11. 11.
    M.W. Matsen, Phys. Rev. Lett. 99, 148304 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    S.T. Milner, T.A. Witten, M.E. Cates, Macromolecules 22, 853 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    T.M. Beardsley, M.W. Matsen, Eur. Phys. J. E 27, 323 (2008).CrossRefGoogle Scholar
  14. 14.
    T.M. Beardsley, M.W. Matsen, Macromolecules 44, 6209 (2011).CrossRefGoogle Scholar
  15. 15.
    S.W. Sides, G.H. Fredrickson, J. Chem. Phys. 121, 4974 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Widin, A.K. Schmitt, K. Im, A.L. Schmitt, M.K. Mahanthappa, Macromolecules 43, 7913 (2010).CrossRefGoogle Scholar
  17. 17.
    A.L. Schmitt, M.K. Mahanthappa, Soft Matter 8, 2294 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Widin, A.K. Schmitt, A.L. Schmitt, K. Im, M.K. Mahanthappa, J. Am. Chem. Soc. 134, 3834 (2012).CrossRefGoogle Scholar
  19. 19.
    M.W. Matsen, Macromolecules 45, 2161 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    E. Helfand, J. Chem. Phys. 62, 999 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    A.N. Semenov, Sov. Phys. JETP 61, 733 (1985).Google Scholar
  22. 22.
    M.W. Matsen, Eur. Phys. J. E 33, 297 (2010).CrossRefGoogle Scholar
  23. 23.
    M.W. Matsen, in Soft Matter, Vol. 1: Polymer Melts and Mixtures, edited by G. Gompper, M. Schick (Wiley-VCH, Weinheim, 2006).Google Scholar
  24. 24.
    G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, New York, 2006).Google Scholar
  25. 25.
    M.W. Matsen, J. Phys.: Condens. Matter 14, R21 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    G.V.Z. Schulz, Z. Phys. Chem. (Munich) B43, 25 (1939).Google Scholar
  27. 27.
    B.H. Zimm, J. Chem. Phys. 16, 1099 (1948).ADSCrossRefGoogle Scholar
  28. 28.
    M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    M.W. Matsen, Eur. Phys. J. E 30, 361 (2009).CrossRefGoogle Scholar
  30. 30.
    G.M. Grason, R.D. Kamien, Phys. Rev. Lett. 91, 7371 (2004).Google Scholar
  31. 31.
    G.M. Grason, B.A. DiDonna, R.D. Kamien, Phys. Rev. Lett. 91, 058304 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    B.-K. Cho, A. Jain, S.M. Gruner, U. Wiesner, Science 305, 1598 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    M.W. Matsen, R.B. Thompson, J. Chem. Phys. 111, 7139 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    M.W. Matsen, Macromolecules 28, 5765 (1995).ADSCrossRefGoogle Scholar
  35. 35.
    M.W. Matsen, Macromolecules 36, 9647 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    M. Xenidou, F.L. Beyer, N. Hadjichristidis, S.P. Gido, N. Bech Tan, Macromolecules 31, 7659 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    C. Lee, S.P. Gido, Y. Poulos, N. Hadjichristidis, N. Bech Tan, S.F. Trevino, J.W. Mayes, Polymer 39, 4631 (1998).CrossRefGoogle Scholar
  38. 38.
    F. Beyer, S.P. Gido, C. Bushchi, H. Iatrou, D. Uhrig, J.W. Mayes, M. Chang, B.A. Garetz, N. Balsara, N. Bech Tan, N. Hadjichristidis, Macromolecules 33, 2039 (2000).ADSCrossRefGoogle Scholar
  39. 39.
    S.-M. Mai, W. Mingvanish, S.C. Turner, C. Chaibundit, J.P.A. Fairclough, F. Heatley, M.W. Matsen, A.J. Ryan, C. Booth, Macromolecules 33, 5124 (2000).ADSCrossRefGoogle Scholar
  40. 40.
    A.E. Likhtman, A.N. Semenov, Europhys. Lett. 51, 307 (2000).ADSCrossRefGoogle Scholar
  41. 41.
    Middle blocks have a similar correction to eq. (eq:correction) for the entropy of their center segments, but it is roughly half the size. This is because each center segment becomes two ends when a middle block is snipped in half.Google Scholar
  42. 42.
    L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel, Macromolecules 27, 4639 (1994).ADSCrossRefGoogle Scholar
  43. 43.
    P.M. Lipic, F.S. Bates, M.W. Matsen, J. Polym. Sci., Part B 37, 2229 (1999).CrossRefGoogle Scholar
  44. 44.
    L.M. Pitet, M.A. Hillmyer, Macromolecules 42, 3674 (2009).ADSCrossRefGoogle Scholar
  45. 45.
    M.W. Matsen, F.S. Bates, Macromolecules 29, 7641 (1996).ADSCrossRefGoogle Scholar
  46. 46.
    P.D. Hustad, G.R. Marchand, E.I. Garcia-Meitin, P.L. Roberts, J.D. Weinhold, Macromolecules 42, 3788 (2009).ADSCrossRefGoogle Scholar
  47. 47.
    S. Li, R.A. Register, B.G. Landes, P.D. Hustad, J.D. Weinhold, Macromolecules 43, 4761 (2010).ADSCrossRefGoogle Scholar
  48. 48.
    N.A. Lynd, M.A. Hillmyer, M.W. Matsen, Macromolecules 41, 4531 (2008).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Mathematical and Physical SciencesUniversity of ReadingWhiteknights, ReadingUK

Personalised recommendations