Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. The European Physical Journal E
  3. Article
Sedimentation and polar order of active bottom-heavy particles
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Distinctive diffusive properties of swimming planktonic copepods in different environmental conditions

25 June 2018

Raffaele Pastore, Marco Uttieri, … Maria Grazia Mazzocchi

Emergent collective dynamics of bottom-heavy squirmers under gravity

25 May 2020

Felix Rühle & Holger Stark

Gyrotactic cluster formation of bottom-heavy squirmers

18 March 2022

Felix Rühle, Arne W. Zantop & Holger Stark

Coupled Self-Organized Hydrodynamics and Stokes Models for Suspensions of Active Particles

31 January 2019

Pierre Degond, Sara Merino-Aceituno, … Hui Yu

Dynamics of sedimenting active Brownian particles

30 January 2019

Jérémy Vachier & Marco G. Mazza

Sedimentation of random suspensions and the effect of hyperuniformity

11 January 2022

Mitia Duerinckx & Antoine Gloria

Dynamics of stochastic-constrained particles

16 February 2023

Tao Guo

Orientation fluctuations in magnetotactic swimming

15 April 2021

Sebastian Smyk, Vitali Telezki, … Stefan Klumpp

Gyrotactic phytoplankton in laminar and turbulent flows: A dynamical systems approach

20 March 2019

Massimo Cencini, Guido Boffetta, … Filippo De Lillo

Download PDF
  • Regular Article
  • Open Access
  • Published: 25 April 2013

Sedimentation and polar order of active bottom-heavy particles

  • Katrin Wolff1,
  • Aljoscha M. Hahn1 &
  • Holger Stark1 

The European Physical Journal E volume 36, Article number: 43 (2013) Cite this article

  • 1016 Accesses

  • 44 Citations

  • Metrics details

Abstract

Self-propelled particles in an external gravitational field have been shown to display both an increased sedimentation length and polar order even without particle interactions. Here, we investigate self-propelled particles which additionally are bottom-heavy, that is they feel a torque aligning them to swim against the gravitational field. For bottom-heavy particles the gravitational field has the two opposite effects of i) sedimentation and ii) upward alignment of the particles’ swimming direction. We perform a multipole expansion of the one-particle distribution of non-interacting particles with respect to orientation and derive expressions for sedimentation length and mean particle orientation which we check against Brownian Dynamics simulations. For large strength of gravity or small particle speeds and aligning torque, we observe sedimentation with increased sedimentation length compared with passive colloids but also active colloids without bottom-heaviness. Increasing, for example, swimming speed the sedimentation profile is inverted and the particles swim towards the top wall of the enclosing box. We find maximal orientational order at intermediate swimming speeds for both cases of particles with bottom-heaviness and those without. Ordering unsurprisingly is increased for the bottom-heavy particles, but this difference disappears at higher levels of activity and for very high activities ordering goes to zero in both cases.

Graphical abstract

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).

    Article  ADS  Google Scholar 

  2. F. Ginelli, F. Peruani, M. Bär, H. Chaté, Phys. Rev. Lett. 104, 184502 (2010).

    Article  ADS  Google Scholar 

  3. H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012).

    Article  ADS  Google Scholar 

  4. R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002).

    Article  ADS  Google Scholar 

  5. D. Saintillan, M.J. Shelley, Phys. Rev. Lett. 100, 178103 (2008).

    Article  ADS  Google Scholar 

  6. A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009).

    Article  ADS  Google Scholar 

  7. J. Tailleur, M.E. Cates, Phys. Rev. Lett. 100, 218103 (2008).

    Article  ADS  Google Scholar 

  8. J. Bialké, T. Speck, H. Löwen, Phys. Rev. Lett. 108, 168301 (2012).

    Article  ADS  Google Scholar 

  9. F.D.C. Farrell, M.C. Marchetti, D. Marenduzzo, J. Tailleur, Phys. Rev. Lett. 108, 248101 (2012).

    Article  ADS  Google Scholar 

  10. Y. Fily, M.C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012).

    Article  ADS  Google Scholar 

  11. M.E. Cates, J. Tailleur, EPL 101, 20010 (2013).

    Article  ADS  Google Scholar 

  12. G.S. Redner, M.F. Hagan, A. Baskaran, Phys. Rev. Lett. 110, 055701 (2013).

    Article  ADS  Google Scholar 

  13. R. Golestanian, Phys. Rev. Lett. 108, 038303 (2012).

    Article  ADS  Google Scholar 

  14. I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012).

    Article  ADS  Google Scholar 

  15. J. Tailleur, M.E. Cates, EPL 86, 60002 (2009).

    Article  ADS  Google Scholar 

  16. J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010).

    Article  ADS  Google Scholar 

  17. M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011).

    Article  ADS  Google Scholar 

  18. A. Pototsky, H. Stark, EPL 98, 50004 (2012).

    Article  ADS  Google Scholar 

  19. H.C. Berg, Random Walks in Biology (Princeton University Press, 1993).

  20. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).

    Article  ADS  Google Scholar 

  21. R. Golestanian, Phys. Rev. Lett. 102, 188305 (2009).

    Article  ADS  Google Scholar 

  22. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012).

    Article  Google Scholar 

  23. S. Childress, M. Levandowsky, E.A. Spiegel, J. Fluid Mech. 69, 591 (1975).

    Article  ADS  MATH  Google Scholar 

  24. T.J. Pedley, J.O. Kessler, J. Fluid Mech. 212, 155 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M.A. Bees, N.A. Hill, Phys. Fluids 10, 1864 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. K. Drescher, K.C. Leptos, I. Tuval, T. Ishikawa, T.J. Pedley, R.E. Goldstein, Phys. Rev. Lett. 102, 168101 (2009).

    Article  ADS  Google Scholar 

  27. F. Ebert, P. Dillmann, G. Maret, P. Keim, Rev. Sci. Instrum. 80, 083902 (2009).

    Article  ADS  Google Scholar 

  28. J. Yan, M. Bloom, S.C. Bae, E. Luijten, S. Granick, Nature 491, 578 (2012).

    Article  ADS  Google Scholar 

  29. C.R. Williams, M.A. Bees, J. Exp. Biol. 214, 2398 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany

    Katrin Wolff, Aljoscha M. Hahn & Holger Stark

Authors
  1. Katrin Wolff
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Aljoscha M. Hahn
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Holger Stark
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Katrin Wolff.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Wolff, K., Hahn, A.M. & Stark, H. Sedimentation and polar order of active bottom-heavy particles. Eur. Phys. J. E 36, 43 (2013). https://doi.org/10.1140/epje/i2013-13043-x

Download citation

  • Received: 14 December 2012

  • Accepted: 04 April 2013

  • Published: 25 April 2013

  • DOI: https://doi.org/10.1140/epje/i2013-13043-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Soft Matter: Colloids and Nanoparticles
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature