Advertisement

Sedimentation and polar order of active bottom-heavy particles

  • Katrin WolffEmail author
  • Aljoscha M. Hahn
  • Holger Stark
Open Access
Regular Article

Abstract

Self-propelled particles in an external gravitational field have been shown to display both an increased sedimentation length and polar order even without particle interactions. Here, we investigate self-propelled particles which additionally are bottom-heavy, that is they feel a torque aligning them to swim against the gravitational field. For bottom-heavy particles the gravitational field has the two opposite effects of i) sedimentation and ii) upward alignment of the particles’ swimming direction. We perform a multipole expansion of the one-particle distribution of non-interacting particles with respect to orientation and derive expressions for sedimentation length and mean particle orientation which we check against Brownian Dynamics simulations. For large strength of gravity or small particle speeds and aligning torque, we observe sedimentation with increased sedimentation length compared with passive colloids but also active colloids without bottom-heaviness. Increasing, for example, swimming speed the sedimentation profile is inverted and the particles swim towards the top wall of the enclosing box. We find maximal orientational order at intermediate swimming speeds for both cases of particles with bottom-heaviness and those without. Ordering unsurprisingly is increased for the bottom-heavy particles, but this difference disappears at higher levels of activity and for very high activities ordering goes to zero in both cases.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    F. Ginelli, F. Peruani, M. Bär, H. Chaté, Phys. Rev. Lett. 104, 184502 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    D. Saintillan, M.J. Shelley, Phys. Rev. Lett. 100, 178103 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    J. Tailleur, M.E. Cates, Phys. Rev. Lett. 100, 218103 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    J. Bialké, T. Speck, H. Löwen, Phys. Rev. Lett. 108, 168301 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    F.D.C. Farrell, M.C. Marchetti, D. Marenduzzo, J. Tailleur, Phys. Rev. Lett. 108, 248101 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Fily, M.C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    M.E. Cates, J. Tailleur, EPL 101, 20010 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    G.S. Redner, M.F. Hagan, A. Baskaran, Phys. Rev. Lett. 110, 055701 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    R. Golestanian, Phys. Rev. Lett. 108, 038303 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    J. Tailleur, M.E. Cates, EPL 86, 60002 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    A. Pototsky, H. Stark, EPL 98, 50004 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    H.C. Berg, Random Walks in Biology (Princeton University Press, 1993).Google Scholar
  20. 20.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    R. Golestanian, Phys. Rev. Lett. 102, 188305 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012).CrossRefGoogle Scholar
  23. 23.
    S. Childress, M. Levandowsky, E.A. Spiegel, J. Fluid Mech. 69, 591 (1975).ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    T.J. Pedley, J.O. Kessler, J. Fluid Mech. 212, 155 (1990).MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    M.A. Bees, N.A. Hill, Phys. Fluids 10, 1864 (1998).MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. 26.
    K. Drescher, K.C. Leptos, I. Tuval, T. Ishikawa, T.J. Pedley, R.E. Goldstein, Phys. Rev. Lett. 102, 168101 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    F. Ebert, P. Dillmann, G. Maret, P. Keim, Rev. Sci. Instrum. 80, 083902 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    J. Yan, M. Bloom, S.C. Bae, E. Luijten, S. Granick, Nature 491, 578 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    C.R. Williams, M.A. Bees, J. Exp. Biol. 214, 2398 (2011).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations