Confined flows of a polymer microgel

  • Baudouin Geraud
  • Lyderic Bocquet
  • Catherine Barentin
Regular Article

Abstract

In this paper, we probe the influence of confinement on the flows of a polymer microgel, namely Carbopol. We compare its bulk rheological behavior, measured with a rheometer and well described by a Hershel-Bulkley law, to velocity profiles measured in rough microchannels, obtained with a particle tracking velocimetry technique. We show a strong disagreement between the bulk prediction for the velocity profiles and the measured ones in the microchannels. Velocity profiles in confined conditions are successfully analyzed within the framework of a non-local fluidity model introduced recently (J. Goyon et al. Nature, 454, 84 (2008)). This allows to determine a cooperativity length ξ, whose order of magnitude compares with the structure size of the microgel. Moreover, we measure flow curves using a rheometer for different gap conditions and also show that this set of data exhibit a strong effect of the confinement on the measured rheological properties. This is again characterized by a typical length of the same order as the cooperativity length scale ξ. We thus evidence confinement effects with two complementary experiments which both give the same typical length for the rearrangements in the flows.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    C.A. Angell, Science 267, 1924 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    P. Coussot, Soft Matter 3, 528 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    D. Bonn, M.M. Denn, Science 324, 1401 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    P.C.F. Møller, A. Fall, D. Bonn, EPL 87, 38004 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    B. Dollet, J. Rheol. 54, 741 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    R. Lespiat, S. Cohen-Addad, R. Höhler, Phys. Rev. Lett. 106, 148302 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    M. Le Merrer, S. Cohen-Addad, R. Höhler, Phys. Rev. Lett. 108, 188301 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    R. Besseling, L. Isa, P. Ballesta, G. Petekidis, M.E. Cates, W.C.K. Poon, Phys. Rev. Lett. 105, 268301 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, L. Bocquet, Nature 454, 84 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    J. Goyon, A. Colin, L. Bocquet, Soft Matter 6, 2668 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    P. Jop, V. Mansard, P. Chaudhuri, L. Bocquet, A. Colin, Phys. Rev. Lett. 108, 148301 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    K. Nichol, A. Zanin, R. Bastien, E. Wandersman, M. van Hecke, Phys. Rev. Lett. 104, 078302 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    K.A. Reddy, Y. Forterre, O. Pouliquen, Phys. Rev. Lett. 106, 108301 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    K. Kamrin, G. Koval, Phys. Rev. Lett. 108, 178301 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    M. Sbragaglia, R. Benzi, M. Bernaschi, S. Succi, Soft Matter 8, 10773 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    David Lee, Iris A. Gutowski, Arthur E. Bailey, Laurent Rubatat, John R. de Bruyn, Barbara J. Frisken, Phys. Rev. E 83, 031401 (2011).ADSGoogle Scholar
  17. 17.
    G. Benmouffok-Benbelkacem, F. Caton, C. Baravian, S. Skali-Lami, Rheol. Acta 49, 305 (2010).CrossRefGoogle Scholar
  18. 18.
    J.M. Piau, J. Non-Newtonian Fluid Mech. 144, 1 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    P. Coussot, L. Tocquer, C. Lanos, G. Ovarlez, J. Non-Newtonian Fluid Mech. 158, 85 (2009).CrossRefGoogle Scholar
  20. 20.
    T. Divoux, D. Tamarii, C. Barentin, S. Teitel, S. Manneville, Soft Matter 8, 4151 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    L. Bocquet, A. Colin, A. Ajdari, Phys. Rev. Lett. 103, 036001 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    G.P. Roberts, H.A. Barnes, Rheol. Acta 40, 499 (2001).CrossRefGoogle Scholar
  23. 23.
    L. Baudonnet, J.-L. Grossiord, F. Rodriguez, J. Dispersion Sci. Technol. 25, 183 (2004).CrossRefGoogle Scholar
  24. 24.
    J.-Y Kim, J.-Y. Song, E.-J. Lee, S.-K. Park, Colloid Polym. Sci. 281, 614 (2003).CrossRefGoogle Scholar
  25. 25.
    P. Schummer, R.H. Worthoff, Chem. Engen. Sci. 33, 759 (1978).CrossRefGoogle Scholar
  26. 26.
    M.S. Carvalho, M. Padmanabhan, C.W. Macosko, J. Rheol. 38, 1925 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Yan, Z. Zhang, D. Cheneler, J.R. Stokes, M.J. Adams, Rheol. Acta 49, 255 (2010).CrossRefGoogle Scholar
  28. 28.
    T. Divoux, D. Tamarii, C. Barentin, S. Manneville, Phys. Rev. Lett. 104, 208301 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    F.K. Oppong, L. Rubatat, A.E. Bailey, B.J. Frisken, J.R. de Bruyn, Phys. Rev. E 73, 041405 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    I.A. Gutowski, D. Lee, J.R. de Bruyn, B.J. Frisken, Rheol. Acta 51, 441 (2012).CrossRefGoogle Scholar
  31. 31.
    C. Métivier, Y. Rharbi, A. Magnin, A. Bou Abboud, Soft Matter 8, 3365 (2012).Google Scholar
  32. 32.
    P. Guillot, P. Panizza, J.-B. Salmon, M. Joanicot, A. Colin, C.-H. Bruneau, T. Colin, Langmuir 22, 6438 (2006).CrossRefGoogle Scholar
  33. 33.
    S.P. Meeker, R.T. Bonnecaze, M. Cloitre, Phys. Rev. Lett. 92, 198302 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    S.P. Meeker, R.T. Bonnecaze, M. Cloitre, J. Rheol. 48, 1295 (2004).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Baudouin Geraud
    • 1
  • Lyderic Bocquet
    • 1
  • Catherine Barentin
    • 1
  1. 1.Institut Lumière Matière, UMR5306 Université Lyon 1-CNRSUniversité de LyonVilleurbanne cedexFrance

Personalised recommendations