Skip to main content

On the moving contact line singularity: Asymptotics of a diffuse-interface model

Abstract

The behaviour of a solid-liquid-gas system near the three-phase contact line is considered using a diffuse-interface model with no-slip at the solid and where the fluid phase is specified by a continuous density field. Relaxation of the classical approach of a sharp liquid-gas interface and careful examination of the asymptotic behaviour as the contact line is approached is shown to resolve the stress and pressure singularities associated with the moving contact line problem. Various features of the model are scrutinised, alongside extensions to incorporate slip, finite-time relaxation of the chemical potential, or a precursor film at the wall.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1

    D.L. Hu, B. Chan, J.W.M. Bush, Nature 424, 663 (2003)

    ADS  Article  Google Scholar 

  2. 2

    Z. Guo, W. Liu, Plant Sci. 172, 1103 (2007)

    Article  Google Scholar 

  3. 3

    S.J. Weinstein, K.J. Ruschak, Annu. Rev. Fluid Mech. 36, 29 (2004)

    ADS  Article  Google Scholar 

  4. 4

    B.-J. deGans, P. Duineveld, U. Schubert, Adv. Mater. 16, 203 (2004)

    Article  Google Scholar 

  5. 5

    J.Z. Wang, Z.H. Zheng, H.W. Li, W.T.S. Huck, H. Sirringhaus, Nat. Mater. 3, 171 (2004)

    ADS  Article  Google Scholar 

  6. 6

    D. Saini, D.N. Rao, SPE Reserv. Eval. Eng. 12, 702 (2009)

    Google Scholar 

  7. 7

    E.B. Dussan V., Annu. Rev. Fluid Mech. 11, 371 (1979)

    ADS  Article  Google Scholar 

  8. 8

    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    ADS  Article  Google Scholar 

  9. 9

    T.D. Blake, J. Colloid Interface Sci. 299, 1 (2006)

    Article  Google Scholar 

  10. 10

    D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 81, 739 (2009)

    ADS  Article  Google Scholar 

  11. 11

    E.B. Dussan V., S.H. Davis, J. Fluid Mech. 65, 71 (1974)

    ADS  Article  MATH  Google Scholar 

  12. 12

    Y.D. Shikhmurzaev, Physica D 217, 121 (2006)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  13. 13

    C. Huh, L.E. Scriven, J. Colloid Interface Sci. 35, 85 (1971)

    Article  Google Scholar 

  14. 14

    C.-L. Navier, Mem. Acad. Sci. Inst. Fr. 6, 389 (1823)

    Google Scholar 

  15. 15

    M.G. Velarde (Editor), Eur. Phys. J. ST 197, (2011)

  16. 16

    L.W. Schwartz, R.R. Eley, J. Colloid Interface Sci. 202, 173 (1998)

    Article  Google Scholar 

  17. 17

    D.E. Weidner, L.W. Schwartz, Phys. Fluids 6, 3535 (1994)

    ADS  Article  MATH  Google Scholar 

  18. 18

    Y.D. Shikhmurzaev, Int. J. Multiphase Flow 19, 589 (1993)

    Article  MATH  Google Scholar 

  19. 19

    D.N. Sibley, N. Savva, S. Kalliadasis, Phys. Fluids 24, 082105 (2012)

    ADS  Article  Google Scholar 

  20. 20

    M. Renardy, Y. Renardy, J. Li, J. Comput. Phys. 171, 243 (2001)

    ADS  Article  MATH  Google Scholar 

  21. 21

    P. Colinet, A. Rednikov, Eur. Phys. J. ST 197, 89 (2011)

    Article  Google Scholar 

  22. 22

    D.M. Anderson, G.B. McFadden, A.A. Wheeler, Annu. Rev. Fluid Mech. 30, 139 (1998)

    MathSciNet  ADS  Article  Google Scholar 

  23. 23

    R. Evans, Adv. Phys. 28, 143 (1979)

    ADS  Article  Google Scholar 

  24. 24

    P. Yatsyshin, N. Savva, S. Kalliadasis, J. Chem. Phys. 136, 124113 (2012)

    ADS  Article  Google Scholar 

  25. 25

    L.M. Pismen, Y. Pomeau, Phys. Rev. E 62, 2480 (2000)

    MathSciNet  ADS  Article  Google Scholar 

  26. 26

    P. Seppecher, Int. J. Eng. Sci. 34, 977 (1996)

    Article  MATH  Google Scholar 

  27. 27

    A.J. Briant, Philos. Trans. Roy. Soc. A 360, 485 (2002)

    ADS  Article  MATH  Google Scholar 

  28. 28

    A.J. Briant, A.J. Wagner, J.M. Yeomans, Phys. Rev. E 69, 031602 (2004)

    ADS  Article  Google Scholar 

  29. 29

    V.V. Khatavkar, P.D. Anderson, H.E.H. Meijer, J. Fluid Mech. 572, 367 (2007)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  30. 30

    H. Ding, P.D.M. Spelt, J. Fluid Mech. 576, 287 (2007)

    ADS  Article  MATH  Google Scholar 

  31. 31

    P. Yue, C. Zhou, J.J. Feng, J. Fluid Mech. 645, 279 (2010)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  32. 32

    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)

    ADS  Article  Google Scholar 

  33. 33

    A. Pereira, S. Kalliadasis, J. Fluid Mech. 692, 53 (2012)

    ADS  Article  MATH  Google Scholar 

  34. 34

    A. Hoang, H.P. Kavehpour, Phys. Rev. Lett. 106, 254501 (2011)

    ADS  Article  Google Scholar 

  35. 35

    L.M. Pismen, Colloids Surf. A 206, 11 (2002)

    Article  Google Scholar 

  36. 36

    P. Yue, J.J. Feng, C. Liu, J. Shen, J. Fluid Mech. 515, 293 (2004)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  37. 37

    D. Jacqmin, J. Fluid Mech. 402, 57 (2000)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  38. 38

    X. Xu, T. Qian, J. Chem. Phys. 133, 204704 (2010)

    ADS  Article  Google Scholar 

  39. 39

    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)

    ADS  Article  Google Scholar 

  40. 40

    Y.D. Shikhmurzaev, Capillary Flows with Forming Interfaces (Taylor & Francis, London, 2008)

  41. 41

    L.M. Hocking, J. Fluid Mech. 211, 373 (1990)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  42. 42

    T. Qian, X.-P. Wang, P. Sheng, Phys. Rev. E 68, 016306 (2003)

    ADS  Article  Google Scholar 

  43. 43

    T. Qian, X.-P. Wang, P. Sheng, J. Fluid Mech. 564, 333 (2006)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  44. 44

    P. Yue, J.J. Feng, Eur. Phys. J. ST 197, 37 (2011)

    Article  Google Scholar 

  45. 45

    P. Yue, J.J. Feng, Phys. Fluids 23, 012106 (2011)

    ADS  Article  Google Scholar 

  46. 46

    N. Savva, S. Kalliadasis, Phys. Fluids 21, 092102 (2009)

    ADS  Article  Google Scholar 

  47. 47

    N. Savva, S. Kalliadasis, G.A. Pavliotis, Phys. Rev. Lett. 104, 084501 (2010)

    ADS  Article  Google Scholar 

  48. 48

    R. Vellingiri, N. Savva, S. Kalliadasis, Phys. Rev. E 84, 036305 (2011)

    ADS  Article  Google Scholar 

  49. 49

    C. Wylock, M. Pradas, B. Haut, P. Colinet, S. Kalliadasis, Phys. Fluids 24, 032108 (2012)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sibley, D.N., Nold, A., Savva, N. et al. On the moving contact line singularity: Asymptotics of a diffuse-interface model. Eur. Phys. J. E 36, 26 (2013). https://doi.org/10.1140/epje/i2013-13026-y

Download citation

Keywords

  • Flowing Matter: Interfacial phenomena