Skip to main content
Log in

Mechano-transduction in tumour growth modelling

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The evolution of biological systems is strongly influenced by physical factors, such as applied forces, geometry or the stiffness of the micro-environment. Mechanical changes are particularly important in solid tumour development, as altered stromal-epithelial interactions can provoke a persistent increase in cytoskeletal tension, driving the gene expression of a malignant phenotype. In this work, we propose a novel multi-scale treatment of mechano-transduction in cancer growth. The avascular tumour is modelled as an expanding elastic spheroid, whilst growth may occur both as a volume increase and as a mass production within a cell rim. Considering the physical constraints of an outer healthy tissue, we derive the thermo-dynamical requirements for coupling growth rate, solid stress and diffusing biomolecules inside a heterogeneous tumour. The theoretical predictions successfully reproduce the stress-dependent growth curves observed by in vitro experiments on multicellular spheroids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.C. DuFort, M.J. Paszek, V.M. Weaver, Nat. Rev. Mol. Cell Biol. 12, 308 (2011)

    Article  Google Scholar 

  2. D.T. Butcher, T. Alliston, V.M. Weaver, Nat. Rev. Cancer 9, 108 (2009)

    Article  Google Scholar 

  3. M.A. Wozniak, C.S. Chen, Nat. Rev. Mol. Cell Biol. 10, 34 (2009)

    Article  Google Scholar 

  4. B.D. Hoffman, C. Grashoff, M.A. Schwartz, Nature 475, 316 (2011)

    Article  Google Scholar 

  5. M.J. Paszek et al., Cancer Cell 8, 241 (2005)

    Article  Google Scholar 

  6. Z.N. Demou, Ann. Biomed. Eng. 38, 3509 (2010)

    Article  Google Scholar 

  7. R.K. Assoian, E.A. Klein, Trends Cell Biol. 18, 347 (2008)

    Article  Google Scholar 

  8. D.J. Tschumperlin et al., Nature 429, 83 (2004)

    Article  ADS  Google Scholar 

  9. D.H. Kim et al., Annu. Rev. Biomed. Eng. 11, 203 (2009)

    Article  Google Scholar 

  10. W.R. Inch, J.A. McCredie, R.M. Sutherland, Growth 34, 271 (1970)

    Google Scholar 

  11. R.M. Sutherland, J.A. McCredie, W.R. Inch, J. Nat. Cancer Inst. 46, 113 (1971)

    Google Scholar 

  12. H.P. Greenspan, Stud. Appl. Math. 52, 317 (1972)

    Google Scholar 

  13. G. Helmlinger, P.A. Netti, H.C. Lichtenbeld, R.J. Melder, R.K. Jain, Nat. Biotech. 15, 778 (1997)

    Article  Google Scholar 

  14. C.Y. Chen, H.M. Byrne, J.R. King, J. Math. Biol. 43, 191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. H.M. Byrne, L. Preziosi, Math. Med. Biol. 20, 341 (2004)

    Article  Google Scholar 

  16. M. Chaplain, L. Graziano, L. Preziosi, Math. Med. Biol. 23, 197 (2006)

    Article  MATH  Google Scholar 

  17. D. Drasdo, S. Höhme, Phys. Biol. 2, 133 (2005)

    Article  ADS  Google Scholar 

  18. J. Galle, L. Preziosi, A. Tosin, Appl. Math. Lett. 22, 1483 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Suresh, Acta Biomater. 3, 413 (2007)

    Article  MathSciNet  Google Scholar 

  20. D. Ambrosi, F. Mollica, Int. J. Eng. Science 40, 1297 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Ambrosi, F. Mollica, J. Math. Biol. 48, 477 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Byrne, D. Drasdo, J. Math. Biol. 58, 657 (2009)

    Article  MathSciNet  Google Scholar 

  23. E.K. Rodriguez, A. Hoger, A.D. McCulloch, J Biomech. 27, 455 (1994)

    Article  Google Scholar 

  24. M. Epstein, G.A. Maugin, Int. J. Plasticity 16, 951 (2000)

    Article  MATH  Google Scholar 

  25. P. Ciarletta, D. Ambrosi, G.A. Maugin, J. Mech. Phys. Solids 60, 432 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. A.J. Zhu, M.P. Scott, Gene Dev. 18, 1985 (2004)

    Article  Google Scholar 

  27. D. Ambrosi, L. Preziosi, Biomech. Model. Mechanobiol. 8, 397 (2009)

    Article  Google Scholar 

  28. L. Preziosi, D. Ambrosi, C. Verdier, J. Theor. Biol. 262, 35 (2010)

    Article  MathSciNet  Google Scholar 

  29. G.A. Maugin, J. Non-Equilib. Thermodyn. 15, 173 (1990)

    Article  ADS  Google Scholar 

  30. T. Lecuit, P.F. Lenne, Nature Rev. Mol. Cell. Biol. 8, 633 (2007)

    Article  Google Scholar 

  31. P. Ciarletta, L. Preziosi, G.A. Maugin, J. Mech. Phys Solids 61, 852 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. J.P. Freyer, R.M. Sutherland, Cancer Res 46, 3504 (1986)

    Google Scholar 

  33. J.P. Freyer, R.M. Sutherland, J. Cell. Physiol. 124, 516 (1985)

    Article  Google Scholar 

  34. F. Montel et al., Phys. Rev. Lett. 107, 188102 (2011)

    Article  ADS  Google Scholar 

  35. G. Cheng, J. Tse, R.K. Jain, L.L. Munn, PLoS ONE 4, e4632 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ciarletta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarletta, P., Ambrosi, D., Maugin, G.A. et al. Mechano-transduction in tumour growth modelling. Eur. Phys. J. E 36, 23 (2013). https://doi.org/10.1140/epje/i2013-13023-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13023-2

Keywords

Navigation