Skip to main content
Log in

Activated drops: Self-excited oscillation, critical speeding and noisy transport

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A small drop (∼10μl) of water exhibits critical speeding dynamics on an inclined super-hydrophobic pillared surface, in that it moves very slowly at first, but speeds up rapidly after a critical velocity is reached. During the mobile phase, some of the natural vibration modes of the drops are self-excited on a pillared surface, but not on a smooth hydrophobic surface. Additional experiments were carried out with glycerin and the solutions of water and glycerin that allowed their density and surface tension to be held more or less constant, while their viscosity could be varied. The terminal velocities of these drops following the critical speeding did not exhibit the expected decrease with increasing viscosity, but showed a highly non-linear behavior, exhibiting a maximum at an intermediate viscosity. Any of these drops moves steadily on a sub-critically inclined pillared substrate when it is subjected to a mechanical noise, the dynamics of which is remarkably similar to that obtained from another designed experiment in which the drops were made to cross a physical barrier assisted by an external noise. The dynamics of the low viscosity (1mPa s to 5.3mPa s) drops are amenable to a Kramers-like transition rate in the low friction limit, although the overall dynamics is found to be sub-Arrhenius. This work highlights the importance of the fluctuation of a drop that is either self-excited or that induced by an external noise in its motion on a surface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.D. Blake, J.M. Haynes, J. Colloid Interface Sci. 30, 421 (1969)

    Article  Google Scholar 

  2. B.W. Cherry, C.M. Holmes, J. Colloid Interface Sci. 29, 174 (1969)

    Article  Google Scholar 

  3. T.D. Blake, Adv. Colloid Interface Sci. 179-182, 22 (2012)

  4. M. Voue, R. Rioboo, M.H. Adao, J. Conti, A.I. Bondar, D.A. Ivanov, T.D. Blake, J. De Coninck, Langmuir 23, 4695 (2007)

    Article  Google Scholar 

  5. S. Mettu, M.K. Chaudhury, Langmuir 26, 8131 (2010)

    Article  Google Scholar 

  6. H.M. Jaeger, L. Chu-Heng, R. Nagel, Phys. Rev. Lett. 62, 40 (1989)

    Article  ADS  Google Scholar 

  7. J.M. Carlson, J.S. Langer, B.E. Shaw, Rev. Mod. Phys. 66, 657 (1994)

    Article  ADS  MATH  Google Scholar 

  8. V.V. Bulatov, A.S. Argon, Model. Simul. Mater. Sci. Eng. 2, 167 (1994)

    Article  ADS  Google Scholar 

  9. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009)

    Article  ADS  Google Scholar 

  10. P.S. Goohpattader, M.K. Chaudhury, Eur. Phys. J. E 35, 67 (2012)

    Article  Google Scholar 

  11. K.A. Reddy, Y. Forterre, O. Pouliquen, Phys. Rev. Lett. 106, 108301 (2011)

    Article  ADS  Google Scholar 

  12. A. Lemaitre, Christiane Caroli, Phys. Rev. Lett. 103, 065501 (2009)

    Article  ADS  Google Scholar 

  13. S. Daniel, M.K. Chaudhury, J. Chen, Science 291, 633 (2001)

    Article  ADS  Google Scholar 

  14. M.E.R. Shanahan, P.G. deGennes, C.R. Acad. Sci. Paris, b: Mech. Phys. Chim. Astron. 324, 261 (1997)

    ADS  Google Scholar 

  15. R. Bonner III, Dropwise Condensation Life Testing of Self-Assembled Monolayers, in Proceedings of the International Heat Transfer Conference, IHCT 14, Washington, D.C., 2011

  16. Y. Pomeau, J. Phys. (Paris) Lett. 44, L585 (1983)

    Article  Google Scholar 

  17. R.E. Johnson, R.H. Dettre, Adv. Chem. Ser. 43, 112 (1964)

    Article  Google Scholar 

  18. T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir 12, 2125 (1996)

    Article  Google Scholar 

  19. D. Oner, T.J. McCarthy, Langmuir 16, 7777 (2000)

    Article  Google Scholar 

  20. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Langmuir 16, 5754 (2000)

    Article  Google Scholar 

  21. C.W. Extrand, Langmuir 18, 7991 (2002)

    Article  Google Scholar 

  22. A. Marmur, Langmuir 19, 8343 (2003)

    Article  Google Scholar 

  23. X.F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, et al., Adv. Mater. 19, 2213 (2007)

    Article  Google Scholar 

  24. M. Reyssat, D. Richard, C. Clanetab, D. Quere, Faraday Discuss. 146, 19 (2010)

    Article  ADS  Google Scholar 

  25. L. Feng, S.H. Li, Y.S. Li, H.J. Li, L.J. Zhang, J. Zhai, Y.L. Song, B.Q. Liu, L. Jiang, D.B. Zhu, Adv. Mat. 14, 1857 (2002)

    Article  Google Scholar 

  26. E. Bormashenko, R. Pogreb, G. Whyman, M. Erlich, Langmuir 23, 6501 (2007)

    Article  Google Scholar 

  27. N.A. Patankar, Langmuir 20, 7097 (2004)

    Article  Google Scholar 

  28. B.M. Mognetti, H. Kusumaatmaja, J.M. Yeomans, Faraday Discuss. 146, 153 (2010)

    Article  ADS  Google Scholar 

  29. M. Sakai, J.H. Song, N. Yoshida, S. Suzuki, Y. Kameshima, A. Nakajima, Langmuir 22, 4906 (2006)

    Article  Google Scholar 

  30. J. Genzer, K. Efimenko, Biofouling 22, 339 (2006)

    Article  Google Scholar 

  31. L. Mahadevan, Nature 411, 895 (2001)

    Article  ADS  Google Scholar 

  32. B.V. Deryaguin, C. R. Acad. Sci. USSR. 51, 361 (1946)

    Google Scholar 

  33. T.D. Blake, J.M. Haynes, Prog. Surface Membrane Sci. 6, 125 (1973)

    Article  Google Scholar 

  34. J.D. Eick, R.J. Good, A.W. Neumann, J. Colloid Interface Sci. 53, 235 (1975)

    Article  Google Scholar 

  35. A. Marmur, Adv. Colloid Interface Sci. 50, 121 (1994)

    Article  Google Scholar 

  36. R.E. Johnson, R.H. Dettre, J. Phys. Chem. 68, 1744 (1964)

    Article  Google Scholar 

  37. R.N. Wenzel, J. Ind. Eng. Chem. 28, 988 (1936)

    Article  Google Scholar 

  38. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)

    Article  Google Scholar 

  39. R.J. Good, J. Am. Chem. Soc. 74, 5041 (1952)

    Article  Google Scholar 

  40. R.J. Good, M.K. Chaudhury, C. Yeung, in First International Congress on Adhesion Science and Technology: Mittal Festschrift, edited by W.J. Van Ooij, H.R. Anderson (VSP, Netherlands, 1998) pp. 181--197

  41. J.F. Joanny, P.G. De Gennes, J. Chem. Phys. 81, 552 (1984)

    Article  ADS  Google Scholar 

  42. Y. Pomeau, J. Vannimenus, J. Colloid Interface Sci. 104, 477 (1985)

    Article  Google Scholar 

  43. M.O. Robbins, J.F. Joanny, Europhys. Lett. 3, 729 (1987)

    Article  ADS  Google Scholar 

  44. D. Ertas, M. Kardar, Phys. Rev. E 49, R2532 (1994)

    Article  ADS  Google Scholar 

  45. H. Kramers, Physica 7, 284 (1940)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, New York, 2001)

  47. Glycerin producers' association, Physical properties of glycerine and its solutions (1963)

  48. N.J. Glassmaker, A. Jagota, C.Y. Hui, W.L. Noderer, M.K. Chaudhury, Proc. Natl. Acad. Sci. U.S.A. 104, 10786 (2007)

    Article  ADS  Google Scholar 

  49. P.S. Goohpattader, S. Mettu, M.K. Chaudhury, Eur. Phys. J. E 34, 120 (2011)

    Article  Google Scholar 

  50. P.S. Goohpattader, M.K. Chaudhury, J. Chem. Phys. 133, 024702 (2010)

    Article  ADS  Google Scholar 

  51. Y. Pomeau, M.L. Berre, arXiv:1107.3331 [physics.geo-ph]

  52. A. Vaidya, M.K. Chaudhury, J. Colloid Interface Science 249, 235 (2002)

    Article  Google Scholar 

  53. J.J. Kennan, Y.A. Peters, D.E. Swarthout, M.J. Owen, A. Namkanisorn, M.K. Chaudhury, J. Biomed. Mater. Res. 36, 487 (1997)

    Article  Google Scholar 

  54. M.E.R. Shanahan, A. Carre, S. Moll, J. Schultz, J. Chim. Phys. Physico-Chim. Biol. 83, 351 (1986)

    Google Scholar 

  55. J. Kim, M.K. Chaudhury, M.J. Owen, J. Colloid Interface Sci. 293, 364 (2006)

    Article  Google Scholar 

  56. The purpose here is to show that with a low-hysteresis smooth surface, the self-excited vibration is negligible. It would have been more appropriate to perform this control experiment with a flat PDMS. The small droplets, however, do not slide on a flat surface of Sylgard 184 till the inclination is very large. The drop then takes the shape of a tear drop and it becomes difficult to track its surface with our current set up. With a silanized Si wafer, both the sliding and the damped oscillation experiments could be performed without any difficulty

  57. M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Rietkerk, G. Sugihara, Nature 461, 53 (2009)

    Article  ADS  Google Scholar 

  58. L. Mahadevan, Y. Pomeau, Phys. Fluids 11, 2449 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. D. Orejon, K. Sefiane, M.E.R. Shanahan, Langmuir 27, 12834 (2011)

    Article  Google Scholar 

  60. D.W. Pilat, P. Papadopoulos, D. Schäffel, D. Vollmer, R. Berger, H.-J. Butt, Langmuir 28, 16812 (2012)

    Article  Google Scholar 

  61. T.D. Blake, J. De Coninck, Eur. Phys. J. ST 197, 249 (2011)

    Article  Google Scholar 

  62. G.R. Fleming, P.G. Wolynes, Physics Today, May issue, 36 (1990)

  63. R.B. Best, G. Hummer, Phys. Rev. Lett. 96, 228104 (2006)

    Article  ADS  Google Scholar 

  64. B.N. Ganguly, Rad. Phys. Chem. 58, 675 (2000)

    Article  ADS  Google Scholar 

  65. A. Shit, S. Chattopadhyay, S.K. Banik, J.R. Chaudhuri, Chem. Phys. Lett. 543, 173 (2012)

    Article  ADS  Google Scholar 

  66. M.K. Chaudhury, P.S. Goohpattader, Eur. Phys. J. E 35, 131 (2012)

    Article  Google Scholar 

  67. V. Aquilanti, K.C. Mundim, M. Elango, S. Kleijn, T. Kasai, Chem. Phys. Lett. 498, 209 (2010)

    Article  ADS  Google Scholar 

  68. D. Jiulin, Physica A 391, 1718 (2012)

    Article  Google Scholar 

  69. S. Mettu, M.K. Chaudhury, Langmuir 28, 14100 (2012)

    Article  Google Scholar 

  70. L. Xu, Z. Li, S. Yao, Appl. Phys. Lett. 101, 064101 (2012)

    Article  ADS  Google Scholar 

  71. A. Prevost, E. Rolley, C. Guthmann, Phys. Rev. Lett. 83, 348 (1999)

    Article  ADS  Google Scholar 

  72. R. Takaki, N. Yoshiyasu, Y. Arai, K. Adachi, Research of pattern formation, edited by R. Takaki (KTK Scientific Publishers, Tokyo, 1994)

  73. S. Moulinet, C. Guthmann, E. Rolley, Eur. Phys. J. B 37, 127 (2004)

    Article  ADS  Google Scholar 

  74. S. Moulinet, C. Guthmann, E. Rolley, Eur. Phys. J. E 8, 437 (2002)

    Google Scholar 

  75. S. Suzuki, A. Nakajima, M. Sakai, Y. Sakurada, N. Yoshida, A. Hashimoto, Y. Kameshima, K. Okada, Chem. Lett. 37, 58 (2008)

    Article  Google Scholar 

  76. P. Hao, C. Lv, Z. Yao, F. He, EPL 90, 66003 (2010)

    Article  ADS  Google Scholar 

  77. J.S. Sharp, Soft Matter 8, 399 (2012) This study identified the resonance modes of a drop undergoing vibration parallel to a substrate using an optical deflection method and clarified with high precision how the vibrational modes are damped as a function of solvent viscosity

    Article  ADS  Google Scholar 

  78. M.E.R. Shanahan, J. Phys. D: Appl. Phys. 23, 321427 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhury, M.K., Goohpattader, P.S. Activated drops: Self-excited oscillation, critical speeding and noisy transport. Eur. Phys. J. E 36, 15 (2013). https://doi.org/10.1140/epje/i2013-13015-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13015-2

Keywords

Navigation